Detection of resistance genes (gyrA,qepA,drf1,drf17) for E.coli in Iraqi aquatic environment

Main Article Content

Zinah Mohammed Mahdi
Shahad Husham Mahmood
Noor Nihad Baqer
https://orcid.org/0000-0001-8285-2693

Abstract

The control of water represents the safe key for fair and optimal use to protect water resources due to human activities, including untreated wastewater, which is considered a carrier of a large number of antibiotic-resistant bacterial species. This study aimed to investigate the prevalence of antibiotic-resistance to E. coli in Tigris River by the presence of resistance genes for aminoglycoside(qepA( ,quinolone (gyrA), and sulfa drugs( dfr1 ,dfr17) due to the frequent use of antibiotics and their release into wastewater of hospitals. Samples were collected from three sites on Tigris River: S1( station wastewater in Adhamiya), S2 (station wastewater in Baghdad Medical city hospital), S3 (station wastewater in Abu Nuwas) from February-July 2021. Out of 67 isolates of bacteria, only 40 isolates of E. coli were detected by Vitek2. The antibiotic-resistance was estimated by the disk diffusion method. All E.coli isolates were tested against 6 antibiotics. The results showed the high resistance antibiotic of E. coli against Ceftazidime 70%, with intermediate resistance to Cefotaxime 47.5%, and low resistance to the sulfa drugs as Trimethoprim 27.5% and quinolones antibiotics as ciprofloxacin 17.5%, aminoglycosides as Amikacin and Gentamycin 5% and 7.5%. Moreover, the results revealed that gyrA gene was detected in 4 isolates (10%) while drf1 and drf17 genes were in 2 isolates of each gene (5%).Whereas qepA gene has not appeared in isolates. In conclusion, the isolates of E.coli from the Tigris River showed low resistance to sulfa drugs and quinolones , aminoglycosides. The resistance genes (gyrA,drf1,drf17) were detected in a few isolates which may be explained by the horizontal transfer of plasmids that carried genes and their distribution among the family  Enterobacteriaceae.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Mahdi ZM, Mahmood SH, Baqer NN. Detection of resistance genes (gyrA,qepA,drf1,drf17) for E.coli in Iraqi aquatic environment. Baghdad Sci.J [Internet]. 2024 Feb. 1 [cited 2024 Feb. 22];21(2):0328. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7782
Section
article

References

Ghaderpour A, Ho WS, Chew LL, Bong CW, Chong VC, Thong KL et al.. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia. Front Microbiol. 2015 Sep 29; 6: 977. https://doi.org/10.3389/fmicb.2015.00977

Martinson JN, Walk ST. Escherichia coli residency in the gut of healthy human adults. EcoSal plus. 2020 Sep 25; 9(1): 1-27. https://doi.org/10.1128/ecosalplus.ESP-0003-2020

Bélanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol Med Microbiol. 2011 Jun 1; 62(1): 1-0. https://doi.org/10.1111/j.1574-695X.2011.00797.x

Derakhshan S, Ahmadi S, Ahmadi E, Nasseri S, Aghaei A. Characterization of Escherichia coli isolated from urinary tract infection and association between virulence expression and antimicrobial susceptibility. BMC Microbiol. 2022 Dec; 22(1): 1-1. https://doi.org/10.1186/s12866-022-02506-0

Bong CW, Low KY, Chai LC, Lee CW. Prevalence and Diversity of Antibiotic Resistant Escherichia coli From Anthropogenic-Impacted Larut River. Front Public Health. 2022; 10. https://doi.org/10.3389/ fpubh.2022.794513

Sanchez MB, Martinez JL. Differential epigenetic compatibility of qnr antibiotic resistance determinants with the chromosome of Escherichia coli. PLoS One. 2012 May 4;7(5): e35149. https://doi.org/10.1371/ journal. pone.0035149.

Rezazadeh M, Baghchesaraei H, Peymani A. Plasmid-mediated quinolone-resistance (qnr) genes in clinical isolates of Escherichia coli collected from several hospitals of Qazvin and Zanjan Provinces, Iran. Osong Public Health Res Perspect. 2016 Oct 1;7(5): 307-12. https://doi.org/ 10.1016/ j.phrp. 2016.08.003.

Wróbel A, Arciszewska K, Maliszewski D, Drozdowska D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot. 2020 Jan; 73(1): 5-27. https://doi.org/10.1038/s41429-019-0240-6

Shi H, Li T, Xu J, Yu J, Yang S, Zhang XE, et al. MgrB Inactivation Confers Trimethoprim Resistance in Escherichia coli. Front Microbiol.. 2021 Jul 28; 12(2021): 682205 https://doi.org/10.3389/fmicb.2021.682205

Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. Antimicrobial resistance in Escherichia coli. Microbiol Spectr.. 2018 Jul 12; 6(4): 6-4. https://doi.org/10.1128/ microbiolspec.ARBA-0026-2017

Alwash MS, Al-Rafyai HM. Antibiotic resistance patterns of diverse Escherichia coli phylogenetic groups isolated from the Al-Hillah River in Babylon Province, Iraq Sci World J. 2019 Sep 2; 2019., https://doi.org/10.1155/2019/5927059

Harrigan WF, McCance ME. Laboratory methods in microbiology. 5th edition. Academic press; 2014 Jun 28. 374 p

Assefa M, Tigabu A, Belachew T, Tessema B. Bacterial profile, antimicrobial susceptibility patterns, and associated factors of community-acquired pneumonia among adult patients in Gondar, Northwest Ethiopia: a cross-sectional study. PloS one. 2022 Feb 1; 17(2): e0262956. https://doi.org/10.1371/ journal. pone. 0262956

CLSI Clinical and Laboratory Standards Institute . Performance Standard for Antimicrobial Susceptibility Testing. 32 edition. CSLI Supplement M100.Wayne, PA: CLSI.2022.;42(1):325 pages.

Kareem SM, Al-Kadmy IM, Kazaal SS, Ali AN, Aziz SN, Makharita RR et al. Detection of gyra and parc mutations and prevalence of plasmid-mediated quinolone resistance genes in Klebsiella pneumoniae. Infect Drug Resist. 2021; 14: 555. https://doi.org/10.2147/IDR.S275852

Grape M, Motakefi A, Pavuluri S, Kahlmeter G. Standard and real-time multiplex PCR methods for detection of trimethoprim resistance dfr genes in large collections of bacteria. Clin Microbiol Infect. 2007 Nov 1; 13(11): 1112-8. https://doi. org/10.1111/j.1469-0691.2007.01807.x

Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018 Mar 1; 26(3): 220-8. https://doi.org/10.1016/j.tim.2017.09.005

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al., Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar 1; 18(3): 268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Assafi MS, Ali FF, Polis RF, Sabaly NJ, Qarani SM. An Epidemiological and Multidrug Resistance Study for E. coli Isolated from Urinary Tract Infection (Three Years of Study). Baghdad Sci J. 2022; 19(1): 0007. http://dx.doi.org/10.21123/bsj.2022.19.1.0007

Al-Rafyai, H.M., Alwash , M.S. and Al- Khafaji, N.S. Quinolone resistance (qnrA)gene in isolates of E. coli collected from the Al- Hilliah river in Babylon province, Iraq. pharmacia. 2021; 68(1): 1-7. https://doi.org/10.3897/pharmacia.68.e57819

Chen Z, Yu D, He S, Ye H, Zhang L, Wen Y.et al. Prevalence of antibiotic-resistant Escherichia coli in drinking water sources in Hangzhou City. Front Microbiol. 2017 Jun 16; 8: 1133. https://doi.org/10.3389/fmicb.2017.01133

Ghaderpour A, Ho WS, Chew LL, Bong CW, Chong VC, Thong KL, Chai LC. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia. Front Microbiol. 2015 Sep 29; 6: 977. https://doi.org/10.3389/fmicb.2015.00977

Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018; 4(3): 482. https://doi.org/10.3934/microbiol.2018.3.482

Salah FD, Soubeiga ST, Ouattara AK, Sadji AY, Metuor-Dabire A, Obiri-Yeboah D.et al. Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lomé, Togo. Antimicrob Resist Infect Control. 2019 Dec; 8(1): 1-8. https://doi.org/10.1186/s13756-019-0552-0.

Von Wintersdorff CJ, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB et al.. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016 Feb 19; 7: 173. https://doi.org/10.3389/fmicb.2016.00173

Majeed Issa O, Abdul-Elah Bakir W, Ayad Abbas M. Laboratory diagnosis of urinary tract infections in patients with resistance genes towards antibiotics. Revis Bionatura 2022; 7 (2) 46. http://dx.doi.org/10.21931/RB/2022.07.02.46

Al-Fayyadh ZH, Turkie AM, Al-Mathkhury HJ. New mutations in GyrA gene of Escherichia coli isolated form Iraqi patients. Iraqi J Sci. .2017: 778-88. http://doi 10.24996.ijs.2017.58.2B.1

Shenagari M, Bakhtiari M, Mojtahedi A, Roushan ZA. High frequency of mutations in gyrA gene associated with quinolones resistance in uropathogenic Escherichia coli isolates from the north of Iran. Iran J Basic Med Sci. 2018 Dec; 21(12): 1226. http://doi:10.22038/ijbms.2018.31285.7539

Mohammed RK, Ibrahim AA. Distribution of dfrA1 and cat1 antibiotic resistance genes in uropathogenic Escherichia coli isolated from teens pregnant women in Iraq. Iraqi J Sci. 2022 Aug 31:3340-53. https://doi.org/10.24996/ijs.2022.63.8.9

Rahman Z, Islam A, Rashid MU, Johura FT, Monira S, Watanabe H, Ahmed N, Camilli A, Alam M. Existence of a novel qepA variant in quinolone resistant Escherichia coli from aquatic habitats of Bangladesh. Gut Pathog. 2017 Dec; 9(1): 1-4. https://doi.org/10.1186/s13099-017-0207-8

Abd El-Baky RM, Farhan SM, Ibrahim RA, Mahran KM, Hetta HF. Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt. Alexandria J Med. 2020 Jan 1; 56(1): 4-13. https://doi.org/10.1080/ 20905068.2019.1707350

Song HJ, Moon DC, Mechesso AF, Kang HY, Kim MH, Choi JH, et al.. Resistance profiling and molecular characterization of extended-spectrum/plasmid-mediated Ampc β-lactamase-producing Escherichia coli isolated from healthy broiler chickens in South Korea. Microorganisms. 2020 Sep 18; 8(9): 1434. https://doi.org/10.3390/microorganisms8091434

Krucinska J, Lombardo MN, Erlandsen H, Estrada A, Si D, Viswanathan K, Wright DL. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Commun Biol. 2022 May 13; 5(1): 1-4. https://doi.org/10.1038/s42003-022-03384-y

Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017; 33(3): 300. https://doi.org/10.4103/joacp.JOACP_349_15

Mancini S, Marchesi M, Imkamp F, Wagner K, Keller PM, Quiblier C, Bodendoerfer E, Courvalin P, Böttger EC. Population-based inference of aminoglycoside resistance mechanisms in Escherichia coli. EBioMedicine. 2019 Aug 1; 46: 184-92. https://doi.org/10.1016/j.ebiom.2019.07.020

Su J, Fan J, Ming H, Guo G, Fu Y, Zhao X. et al. The Municipal Sewage Discharge May Impact the Dissemination of Antibiotic-Resistant Escherichia coli in an Urban Coastal Beach. Water. 2022 May 20; 14(10): 1639. https://doi.org/10.3390/w14101639

Bryce A, Costelloe C, Hawcroft C, Wootton M, Hay AD. Faecal carriage of antibiotic resistant Escherichia coli in asymptomatic children and associations with primary care antibiotic prescribing: a systematic review and meta-analysis. BMC Infect Dis. 2016July; 16(1): 1-2. https://doi.org/10.1186/s12879-016-1697-6

Al-Hasnawy HH, Judi MR, Hamza HJ. The dissemination of multidrug resistance (MDR) and extensively drug resistant (XDR) among uropathogenic E. coli (UPEC) isolates from urinary tract infection patients in babylon province, Iraq. Baghdad Sci J. 2019; 16(4 Suppl.): 986-92. https://doi.org/10.21123/bsj .2019.16.4(Suppl.).0986