Utilization of Localized Surface Plasmon Resonance of Silver Nanoparticles for the Spectrophotometric Estimation of Amlodipine and Hydrochlorothiazide
Main Article Content
Abstract
A potent long-acting calcium channel blockers is amlodipine. Patient with high blood pressure can take it to treat high blood pressure, angina pectoris, and reduce the risk of stroke. Hydrochlorothiazide, a diuretic, is used to treat edema and hypertension. Additionally, it is used to treat certain types of diabetes, hyperglycemia and hypokalemia. These drugs are widely available in the market and are commonly used orally. Therefore, a rapid, accurate, and inexpensive method for the determination of amlodipine and hydrochlorothiazide was developed and validated. This method is based on the ability of these drugs to reduce Ag +1 to Ag 0 by forming silver nanoparticles (AgNPs) in the presence of sodium dodecyl sulfate as a stabilizing agent .Significant surface plasmon resonance of synthesized nanoparticles was observed at 418 and 420 nm wavelengths which was used for quantitative spectrophotometric determination of amlodipine and hydrochlorothiazide .The linear concentration ranges for amlodipine and hydrochlorothiazide were 0.5-28 and 0.8-6 µg mL-1, with detection limits of 0.442 and 0.128 µg mL-1. The proposed method successfully determined amlodipine and hydrochlorothiazide in pure and commercial formulation.
Received 07/12/2022
Revised 28/08/2023
Accepted 30/08/2023
Published Online First 20/04/2024
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
O'Neil MJ, editor. The Merck index: an encyclopedia of chemicals, drugs, and biological. RSC Publishing; 2013.
United States Pharmacopeia and National Formulary (USP 44–NF 39). Rockville MD.
Indian Pharmacopoeia Commission. NFI;2018
Pharmacopoeia Commission. 2021 . https://www.webofpharma.com/202206/british/-pharmacopoeia-2022-bp-2022
Shama SA, Amin AS, El Sayed MM, Omara HA. Utility of oxidation–reduction reaction for the spectrophotometric determination of amlodipine besylate. Arab J Chem. 2009; 2(1): 59-63. https://doi.org/10.1016/j.arabjc.2009.07.002.
Rahman N, Singh M, Hoda MN. Application of oxidants to the spectrophotometric determination of amlodipine besylate in pharmaceutical formulations. Il Farmaco. 2004; 59(11): 913-9. https://doi.org/10.1016/j.farmac.2004.07.009.
Rahman N, Hoda MN. Validated spectrophotometric methods for the determination of amlodipine besylate in drug formulations using 2, 3-dichloro 5, 6-dicyano 1, 4-benzoquinone and ascorbic acid. J Pharm Biomed Anal. 2003; 31(2): 381-92.https://doi.org/10.1016/s0731-7085(02)00610-6.
Rahman N, Azmi SNH. Spectrophotometric determination of amlodipine besylate by charge-transfer complex formation with p-chloranilic acid. Anal Sci. 2000; 16(12): 1353-6. https://doi.org/10.2116/analsci.16.1353.
Lavanya K, Sowjanya T, Bandhavi P, Raveendranath T, DesireddyR, Naga G. Development and Validation of UV Spectrophotometric Method for Estimation of Amlodipine Besylate in Tablet Dosage Form. Res J Pharm Technol. 2012; 5(10): 1320-1323.
Yaqoob S, Rahim S, Bhayo AM, Shah MR, Hameed A, Malik MI.A novel and efficient colorimetric assay for quantitative determination of amlodipine in environmental, biological and pharmaceutical samples. Chem Select. 2019; 4(34): 10046-53.https://doi.org/10.1002/slct.201902334.
Khachornsakkul K, Dungchai W. A Portable Reflective Absorbance Spectrophotometric Smartphone Device for the Rapid and Highly Accurate Determination of Amlodipine in Pharmaceutical Formulation and Human Urine Samples. Anal Sci. 2021; 37(7): 963-9. https://doi.org/10.2116/analsci.20P349.
Fayez YM, Mahmoud AM, Nebsen M, Goda ZM, Boltia SA. Stable solid-state microfabricated potentiometric sensor based on chitosan-Prussian Blue nanocomposite film for amlodipine selective detection. J Electrochem Soc. 2021; 168(5): 057504.https://doi.org/10.1149/1945-7111/abf8d4
Dyade GK, Garad P, Jadhav P. A QBD Approach in Chemometric assisted Method Development of Telmisartan and Amlodipine besylate by UV-VIS Spectrophotometry. AJP Tech. 2022; 12(3): 218-24. https://doi.org/10.52711/2231-5713.2022.00036.
El Mously DA, Mostafa NM, Hassan NY, El-Sayed GM. Different Approaches in Manipulating Ratio Spectra for Analyzing Amlodipine Besylate and Irbesartan Combination. J AOAC Int. 2022 ; 105(5): 1219-27. https://doi.org/10.1093/jaoacint/qsac073
Darbandi A, Sohrabi MR, Bahmaei M. Development of a chemometric-assisted spectrophotometric method for quantitative simultaneous determination of Amlodipine and Valsartan in commercial tablet. Optik 2020; 218; 165110 . https://doi.org/10.1016/j.ijleo.2020.165110
Attala K, Elsonbaty A. Smart UV spectrophotometric methods based on simple mathematical filtration for the simultaneous determination of celecoxib and ramipril in their pharmaceutical mixtures with amlodipine: A comparative statistical study. Spectrochim Acta A. 2021; 244: 118853. https://doi.org/10.1016/j.saa.2020.118853
Sweetman SC. Martindale : The Complete Drug Reference. 37th ed. London: Pharmaceutical Press; 2011. https://doi.org/10.18773/austprescr.2011.099.
Hapse S, Kadaskar P , Dokh M, Shirsath. A S. Spectrophotometric estimation and validation of hydrochlorothiazide in tablet dosage forms by using different solvents. Der Pharma Chemica. 2012; 4(1); 10-14.
Galhardo KS, Dadamos TR, da Silva RJ, Machado SA. Development and validation of an advanced electrochemical sensor for the fast and cheap determination of hydrochlorothiazide in urine samples using the Monte-Carlo method for uncertainty evaluation. Talanta. 2020; 215: 120883. https://doi.org/10.1016/j.talanta.2020.120883
Pappula N, Jyothi K, Ameen SA. Development and Validation of Novel RP-HPLC Method for the Simultaneous Estimation of Amlodipine and Hydrochlorothiazide in Combined Dosage. Int J Sci Health Res .2019 ;4(3); 160-165. https://doi.org/10.52403/ijshr
Hussein BA, Saeed AM. Validation Rp–Hplc Method for Simultaneous Estimation of Hydrochlorothiazide and Valsartan in Formulating Pharmaceutical form. HIV Nursg. 2022; 22(2): 2519-24.
Rahman A, Sravani GJ, Srividya K, Priyadharshni AD, Narmada A, Sahithi K, et al. Development and Validation of Chemometric Assisted FTIR Spectroscopic Method for Simultaneous Estimation of Valsartan and Hydrochlorothiazide in Pure and Pharmaceutical Dosage Forms. J Young Pharm. 2020; 12(2s): s51. https://doi.org/10.5530/jyp.2020.12s.46.
Shah K. Simultaneous Estimation of Nebivolol Hydrochloride and Hydrochlorothiazide in Tablets. Int J Pharm Res Allied Sci. 2022; 11(3): 3 4-9. https://doi.org/10.51847/dnFzYKNf2q.
Ziaie N, Shabani-Nooshabadi M. Introduction of AlV3O9/CNT Nanocomposite for Modification of the Electrochemical Sensor in Order the Determination of Amlodipine and Hydrochlorothiazide in Biological and Pharmaceutical Samples. Ind Eng Chem Res. 2023: 62 (11): 4481-4493. https://doi.org/10.1021/acs.iecr.2c00202.
El-Faham A, Al-Rasheed HH, Sholkamy EN, Osman SM, ALOthman ZA. Simple Approaches for the Synthesis of AgNPs in Solution and Solid Phase Using Modified Methoxypolyethylene Glycol and Evaluation of Their Antimicrobial Activity. Int J Nanomedicine. 2020; 15: 2353-2362. https://doi.org/10.2147/IJN.S244678.
Hasson SO, kadhem Salman SA, Hassan SF, Abbas SM. Antimicrobial Effect of Eco-Friendly Silver Nanoparticles Synthesis by Iraqi Date Palm (Phoenix dactylifera) on Gram-Negative Biofilm-Forming Bacteria. Baghdad Sci J. 2021; 18(4): 1149-1156. https://doi.org/10.21123/bsj.2021.18.4.1149.
Rakaa JM, Obaid AS. Preparation of Nanoparticles in an Eco-friendly Method using Thyme Leaf Extracts. Baghdad Sci J. 2020; 17(2): 670-674 . http://dx.doi.org/10.21123/bsj.2020.17.2(SI).0670.
Mohammad DA, Al-Jubouri SH. Comparative antimicrobial activity of silver nanoparticles synthesized by Corynebacterium glutamicum and plant extracts. Baghdad Sci J. 2019; 16(3 Suppl.): 689-96. https://doi.org/10.21123/bsj.2019.16.3(Suppl.).0689.
Newman J, Blanchard G. Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent. J Nanopart Res.2007; 9(5): 861-8. https://doi.org/10.1007/s11051-006-9145-y
Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016; 17(9): 1534. https://doi.org/10.3390/ijms17091534.
Jayeoye TJ, Sirimahachai U, Wattanasin P, Rujiralai T. Eco-friendly poly (aniline boronic acid)/gum tragacanth stabilized silver nanoparticles nanocomposite for selective sensing of Hg2+. Microchem J. 2022; 182: 107949. https://doi.org/10.1016/j.microc.2022.107949.
Ayad MM, Hosny MM, Metias YM. Green Spectrophotometric Estimation of Minor Concentrations of Methyldopa and Terbutaline Sulphate in Pure Forms and Tablets Using Polyvinylpyrrolidone-Capped Silver Nanoparticles. Nano Biomed Eng. 2021 ; 13(3): 240-8. https://doi.org/10.5101/nbe.v13i3.p240-248.
El-Zahry MR. A Localized Surface Plasmon Resonance Sensing Method for Simultaneous Determination of Atenolol and Amiloride in Pharmaceutical Dosage Forms and Urine Samples. J Anal Methods Chem. 2018; 2018: 9065249. https://doi.org/10.1155/2018/9065249.
Liu H, Liu B, Huang P, Wu Y, Wu FY, Ma L. Colorimetric determination of tyrosinase based on in situ silver metallization catalyzed by gold nanoparticles. Mikrochim Acta. 2020; 187(10): 1-9. https://doi.org/10.1007/s00604-020-04463-9.