Growth of Different Zinc Oxide Nanostructures under Hydrothermal pH Values

Main Article Content

Saja A. H. Abbas
https://orcid.org/0009-0007-7755-7287
Ehssan S. Hassan
https://orcid.org/0000-0001-9379-0918
Oday M. Abdulmunem
https://orcid.org/0000-0003-3779-955X

Abstract

Flower- and rod-like nanostructures of zinc oxide were prepared by the hydrothermal method at 90°C for three hours. Three 0.028 molar solutions, with pH values of 9, 10, and 11, were deposited on glass substrate/ZnO seed layers. All the prepared samples had a polycrystalline diffraction pattern with dominant diffraction from the (002) plane. With increasing pH, the crystallite size increased to a maximum of 37.6 nm. The importance of the research lies in the growth of different nanostructures of zinc oxide by controlling the degree of pH, as the results showed the emergence of flower structures ZnO NFs at pH 11 with a particle size of 100-800 nm, and the development of nanostructures in the form of a bundle of rods at pH 10 with a particle size of 500-800 nm and the development of ZnO NRs in the form of solitary rods perpendicular to the surface at pH 9, with a grain size of 70-80 nm. The optical properties showed a decrease from 78.75% to 79.32% as the pH was increased from 9 to 11, and the value of the energy gap increased from 3.18 eV to 3.31 eV with the increase in the pH value from 9 to 11.

Article Details

How to Cite
1.
Growth of Different Zinc Oxide Nanostructures under Hydrothermal pH Values. Baghdad Sci.J [Internet]. 2024 Jul. 1 [cited 2025 Jan. 23];21(7):2433. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8336
Section
article

How to Cite

1.
Growth of Different Zinc Oxide Nanostructures under Hydrothermal pH Values. Baghdad Sci.J [Internet]. 2024 Jul. 1 [cited 2025 Jan. 23];21(7):2433. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8336

References

Kumbhar D, Kumbhar S, Salunke G, Nalawade R. Effect of Cu doping on structural and optical properties of ZnO nanoparticles using sol–gel method. Macromol Symp. 2019; 387(1): 1800192. https://doi.org/10.1002/masy.201800192

Verma KC, Goyal N, Kotnala RK. Lattice defect formulated ferromagnetism and UV photo-response in pure and Nd, Sm substituted ZnO thin films. Phys Chem Chem Phys. 2019; 21(23): 12540-54. https://doi.org/10.1039/C9CP02285F

Linghu J, Song T, Yang T, Zhou J, Lim K. Computational prediction of stable semiconducting Zn-C binary compounds. Mater Sci Semicond Process. 2023; 155(1): 107237. https://doi.org/10.1016/j.mssp.2022.107237

Hassan ES, Abdulmunem OM. Measuring the Response of Annealed Zinc Oxide Thin Films to Ethanol Gas. Braz J Phys. 2022; 52(5): 160. https://doi.org/10.1007/s13538-022-01158-9

Elmas S, Pat S, Mohammadi R, Musaoğlu C. Determination of physical properties of graphene doped ZnO (ZnO: Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B. 2019; 557(27): 33. https://doi.org/10.1016/j.physb.2018.12.039

Habis C, Zaraket J, Aillerie M. Transparent Conductive Oxides. Part II. Specific Focus on ITO, ZnO-AZO, SnO2-FTO Families for Photovoltaics Applications. Defect Diffus Forum.2022; 417(4): 257-272. https://doi.org/10.4028/p-6fqmfi

Mikhlif HM, Dawood MO, Abdulmunem OM, Mejbel MK. Preparation of High-Performance Room Temperature ZnO Nanostructures Gas Sensor. Acta Phys Pol A. 2021; 140(4). https://doi.org/10.12693/APhysPolA.140.320

Hasanpoor M, Aliofkhazraei M, Delavari H. In-situ study of mass and current density for electrophoretic deposition of zinc oxide nanoparticles. Ceram Int. 2016; 42(6): 6906-6913. https://doi.org/10.1016/j.ceramint.2016.01.076

Abdulmuem OM, Ali MJ, Hassan ES. Optical and structural characterization of aluminum doped zinc oxide thin films prepared by thermal evaporation system. Opt Mater. 2020; 109: 110374. https://doi.org/10.1016/j.optmat.2020.110374

Alwash A. The green synthesize of zinc oxide catalyst using pomegranate peels extract for the photocatalytic degradation of methylene blue dye. Baghdad Sci J. 2020; 17(3): 0787. https://doi.org/10.21123/bsj.2020.17.3.0787

Juraina MD, Ismayadi I, Muhammad RY, Suraya AR. Morphological effect on conductivity performance of ZnO/carbon nanotubes cotton hybrid, Appl Surf Sci. 2022; 7: 100211. https://doi.org/10.1016/j.apsadv.2022.100211

Raizada P, Sudhaik A, Singh P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts. Mater Sci Technol. 2019; 2(3): 509-529. https://doi.org/10.1016/j.mset.2019.04.007

Amakali T, Daniel LS, Uahengo V, Dzade NY, de Leeuw NH. Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods. Crystals.2020; 10(2): 132. https://doi.org/10.3390/cryst10020132

Wu Wei-Che, Juang Yung-Der. The optical properties of Mg-doped ZnO quantum dots. Solid State Commun. 2022; 350: 114791. https://doi.org/10.1016/j.ssc.2022.114791

Wang ZL. Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A. 2007; 88(1): 7-15. https://doi.org/10.1007/s00339-007-3942-8

Abdussalam-Mohammed W. Comparison of chemical and biological properties of metal nanoparticles (Au, Ag), with metal oxide nanoparticles (ZnO-NPs) and their applications. Adv J Chem A. 2020; 3(2): 192-210. https://doi.org/10.33945/SAMI/AJCA.2020.2.8

Nunes D, Pimentel A, Gonçalves A, Pereira S, Branquinho R. Metal oxide nanostructures for sensor applications. Semicond Sci Technol. 2019; 34(4): 043001. https://doi.org/10.1088/1361-6641/ab011e

Kaur N, Singh M, Comini E. One-dimensional nanostructured oxide chemoresistive sensors. Langmuir. 2020; 36(23): 6326-6344. https://doi.org/10.1021/acs.langmuir.0c00701

Fang X, Bando Y, Gautam UK, Zhai T, Zeng H. ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit Rev Solid State Mater Sci. 2009; 34(3): 190-223. https://doi.org/10.1080/10408430903245393

Zhang J, Liu X, Neri G, Pinna N. Nanostructured materials for room‐temperature gas sensors. Adv Mater. 2016; 28(5): 795-831. https://doi.org/10.1002/adma.201503825

Cao P, Yang Z, Navale ST, Han S, Liu X, Liu W. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens Actuators B Chem. 2019; 298: 126850. https://doi.org/10.1016/j.snb.2019.126850

Abbas KN, Bidin N, Sabry RS. Controllable ZnO nanostructures evolution via synergistic pulsed laser ablation and hydrothermal methods. Ceram Int. 2016; 42(12): 13535-13546. https://doi.org/10.1016/j.ceramint.2016.05.146

Sakata K, Minhová Macounová K, Nebel R. pH dependent ZnO nanostructures synthesized by hydrothermal approach and surface sensitivity of their photo electrochemical behavior SN. Appl Sci. 2020; 2(2): 203. https://doi.org/10.1007/s42452-020-1975-1

Rizwan Wahab, Young-Soon Kim, Hyung-Shik Shin. Synthesis Characterization and Effect of pH Variation on Zinc Oxide Nanostructures. Mater Trans. 2009; 50(8): 2092-2097. https://doi.org/10.2320/matertrans.M2009099

Rajasekaran P, Kannan H, Das S, Young M, Santra S. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy. AIMS Environ. Sci. 2016; 3(3): 439-455. https://doi.org/10.3934/environsci.2016.3.439

Manabeng M, Mwankemwa BS, Ocaya RO, Motaung TE, Malevu TD. A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes. 2022; 10(9): 1803. https://doi.org/10.3390/pr10091803

Al-Enizi AM, Shaikh SF, Tamboli AM, Marium A, Ijaz MF, Ubaidullah M, Moydeen Abdulhameed M, Ekar SU. Hybrid ZnO Flowers-Rods Nanostructure for Improved Photodetection Compared to Standalone Flowers and Rods. Coatings. 2021; 11(12): 1464. https://doi.org/10.3390/coatings11121464

Amin G, Asif MH, Zainelabdin A, Zaman S, Nur O, and Willander M. Influence of pH, Precursor Concentration Growth Time and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method. J Nanomater. 2011; 10(1155): 269692. https://doi.org/10.1155/2011/269692

Agarwal S, Rai P, Gatell EN, Llobet E, Güell F. Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens Actuators B Chem. 2019; 292: 24-31. https://doi.org/10.1016/j.snb.2019.04.083

Abass NK, Shanan ZJ, Mohammed TH, Abbas LK. Fabricated of Cu doped ZnO nanoparticles for solar cell application. Baghdad Sci. J. 2018; 15(2): 0198. https://doi.org/10.21123/bsj.2018.15.2.0198

Deepak Negi, Radhe Shyam, Srinivasa Rao Nelamarri. Role of annealing temperature on structural and optical properties of MgTiO3 thin films. Mater Lett X. 2021; 11:100088. https://doi.org/10.1016/j.mlblux.2021.100088

Zainelabdin A, Zaman S, Amin G, Nur O., Deposition of well-aligned ZnO nanorods at 50◦C on metal semiconducting polymer, and copper oxides substrates and their structural and optical properties. Cryst Growth Des. 2010; 10(7): 3250–3256. https://doi.org/10.1021/cg100390x

Amorin LH, Martins LD, Urbano A. Commitment between roughness and crystallite size in the vanadium oxide thin film opto-electrochemical properties.J Mater Res. 2019; 22(1): e20180245. http://dx.doi.org/10.1590/1980-5373-MR-2018-0245