انماء تراكيب نانوية من أكسيد الزنك بطريقة التحلل المائي الحراري لقيم مختلفة من درجة الحامضية
محتوى المقالة الرئيسي
الملخص
تم تحضير تراكيب نانوية (زهرية وعصي) الشكل من اكسيد الزنك بالطريقة الحرارية المائية عند 90 درجة مئوية لمدة ثلاث ساعات. تم تحضير ثلاثة محاليل بقيم درجة الحامضية 9 و10 و11 وبمولارية 0.028 مولاري، على قواعد زجاجية / بذور ZnO. كان لجميع العينات المحضرة نمط حيود متعدد التبلور مع حيود سائد من المستوى (002). مع زيادة درجة الحامضية، زاد حجم البلوري إلى حد أقصى قدره 37.6 نانومتر. أظهرت صور الانبعاث الحقلي لمجهر الماسح الإلكتروني تكمن اهمية البحث في انماء تراكيب مختلفة من اكسيد الزنك من خلال التحكم بدرجة الحامضية حيث أظهرت النتائج ظهور تراكيب زهرية عند الحامضية 11 وبحجم جسيمي 100-800 نانومتر، وانماء تراكيب نانوية بشكل حزمة من العصي عند الحامضية 10 وبحجم جسيمي 500-800 نانومتر وانماء اكسيد الزنك بشكل عصي منفردة عمودية على السطح عند الدرجة الحامضية 9 وبحجم حبيبي 70-80 نانومتر. أظهرت الخصائص البصرية انخفاضًا في النفاذية من 78.75 الى 79.32 وزيادة في قيم فجوة الطاقة من 3.18 الكترون فولط الى 3.31 الكترون فولط مع زيادة درجة الحامضية.
Received 06/01/2023
Revised 07/07/2023
Accepted 09/07/2023
Published Online First 25/12/2023.
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Kumbhar D, Kumbhar S, Salunke G, Nalawade R. Effect of Cu doping on structural and optical properties of ZnO nanoparticles using sol–gel method. Macromol Symp. 2019; 387(1): 1800192. https://doi.org/10.1002/masy.201800192
Verma KC, Goyal N, Kotnala RK. Lattice defect formulated ferromagnetism and UV photo-response in pure and Nd, Sm substituted ZnO thin films. Phys Chem Chem Phys. 2019; 21(23): 12540-54. https://doi.org/10.1039/C9CP02285F
Linghu J, Song T, Yang T, Zhou J, Lim K. Computational prediction of stable semiconducting Zn-C binary compounds. Mater Sci Semicond Process. 2023; 155(1): 107237. https://doi.org/10.1016/j.mssp.2022.107237
Hassan ES, Abdulmunem OM. Measuring the Response of Annealed Zinc Oxide Thin Films to Ethanol Gas. Braz J Phys. 2022; 52(5): 160. https://doi.org/10.1007/s13538-022-01158-9
Elmas S, Pat S, Mohammadi R, Musaoğlu C. Determination of physical properties of graphene doped ZnO (ZnO: Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B. 2019; 557(27): 33. https://doi.org/10.1016/j.physb.2018.12.039
Habis C, Zaraket J, Aillerie M. Transparent Conductive Oxides. Part II. Specific Focus on ITO, ZnO-AZO, SnO2-FTO Families for Photovoltaics Applications. Defect Diffus Forum.2022; 417(4): 257-272. https://doi.org/10.4028/p-6fqmfi
Mikhlif HM, Dawood MO, Abdulmunem OM, Mejbel MK. Preparation of High-Performance Room Temperature ZnO Nanostructures Gas Sensor. Acta Phys Pol A. 2021; 140(4). https://doi.org/10.12693/APhysPolA.140.320
Hasanpoor M, Aliofkhazraei M, Delavari H. In-situ study of mass and current density for electrophoretic deposition of zinc oxide nanoparticles. Ceram Int. 2016; 42(6): 6906-6913. https://doi.org/10.1016/j.ceramint.2016.01.076
Abdulmuem OM, Ali MJ, Hassan ES. Optical and structural characterization of aluminum doped zinc oxide thin films prepared by thermal evaporation system. Opt Mater. 2020; 109: 110374. https://doi.org/10.1016/j.optmat.2020.110374
Alwash A. The green synthesize of zinc oxide catalyst using pomegranate peels extract for the photocatalytic degradation of methylene blue dye. Baghdad Sci J. 2020; 17(3): 0787. https://doi.org/10.21123/bsj.2020.17.3.0787
Juraina MD, Ismayadi I, Muhammad RY, Suraya AR. Morphological effect on conductivity performance of ZnO/carbon nanotubes cotton hybrid, Appl Surf Sci. 2022; 7: 100211. https://doi.org/10.1016/j.apsadv.2022.100211
Raizada P, Sudhaik A, Singh P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts. Mater Sci Technol. 2019; 2(3): 509-529. https://doi.org/10.1016/j.mset.2019.04.007
Amakali T, Daniel LS, Uahengo V, Dzade NY, de Leeuw NH. Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods. Crystals.2020; 10(2): 132. https://doi.org/10.3390/cryst10020132
Wu Wei-Che, Juang Yung-Der. The optical properties of Mg-doped ZnO quantum dots. Solid State Commun. 2022; 350: 114791. https://doi.org/10.1016/j.ssc.2022.114791
Wang ZL. Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A. 2007; 88(1): 7-15. https://doi.org/10.1007/s00339-007-3942-8
Abdussalam-Mohammed W. Comparison of chemical and biological properties of metal nanoparticles (Au, Ag), with metal oxide nanoparticles (ZnO-NPs) and their applications. Adv J Chem A. 2020; 3(2): 192-210. https://doi.org/10.33945/SAMI/AJCA.2020.2.8
Nunes D, Pimentel A, Gonçalves A, Pereira S, Branquinho R. Metal oxide nanostructures for sensor applications. Semicond Sci Technol. 2019; 34(4): 043001. https://doi.org/10.1088/1361-6641/ab011e
Kaur N, Singh M, Comini E. One-dimensional nanostructured oxide chemoresistive sensors. Langmuir. 2020; 36(23): 6326-6344. https://doi.org/10.1021/acs.langmuir.0c00701
Fang X, Bando Y, Gautam UK, Zhai T, Zeng H. ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit Rev Solid State Mater Sci. 2009; 34(3): 190-223. https://doi.org/10.1080/10408430903245393
Zhang J, Liu X, Neri G, Pinna N. Nanostructured materials for room‐temperature gas sensors. Adv Mater. 2016; 28(5): 795-831. https://doi.org/10.1002/adma.201503825
Cao P, Yang Z, Navale ST, Han S, Liu X, Liu W. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens Actuators B Chem. 2019; 298: 126850. https://doi.org/10.1016/j.snb.2019.126850
Abbas KN, Bidin N, Sabry RS. Controllable ZnO nanostructures evolution via synergistic pulsed laser ablation and hydrothermal methods. Ceram Int. 2016; 42(12): 13535-13546. https://doi.org/10.1016/j.ceramint.2016.05.146
Sakata K, Minhová Macounová K, Nebel R. pH dependent ZnO nanostructures synthesized by hydrothermal approach and surface sensitivity of their photo electrochemical behavior SN. Appl Sci. 2020; 2(2): 203. https://doi.org/10.1007/s42452-020-1975-1
Rizwan Wahab, Young-Soon Kim, Hyung-Shik Shin. Synthesis Characterization and Effect of pH Variation on Zinc Oxide Nanostructures. Mater Trans. 2009; 50(8): 2092-2097. https://doi.org/10.2320/matertrans.M2009099
Rajasekaran P, Kannan H, Das S, Young M, Santra S. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy. AIMS Environ. Sci. 2016; 3(3): 439-455. https://doi.org/10.3934/environsci.2016.3.439
Manabeng M, Mwankemwa BS, Ocaya RO, Motaung TE, Malevu TD. A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes. 2022; 10(9): 1803. https://doi.org/10.3390/pr10091803
Al-Enizi AM, Shaikh SF, Tamboli AM, Marium A, Ijaz MF, Ubaidullah M, Moydeen Abdulhameed M, Ekar SU. Hybrid ZnO Flowers-Rods Nanostructure for Improved Photodetection Compared to Standalone Flowers and Rods. Coatings. 2021; 11(12): 1464. https://doi.org/10.3390/coatings11121464
Amin G, Asif MH, Zainelabdin A, Zaman S, Nur O, and Willander M. Influence of pH, Precursor Concentration Growth Time and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method. J Nanomater. 2011; 10(1155): 269692. https://doi.org/10.1155/2011/269692
Agarwal S, Rai P, Gatell EN, Llobet E, Güell F. Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens Actuators B Chem. 2019; 292: 24-31. https://doi.org/10.1016/j.snb.2019.04.083
Abass NK, Shanan ZJ, Mohammed TH, Abbas LK. Fabricated of Cu doped ZnO nanoparticles for solar cell application. Baghdad Sci. J. 2018; 15(2): 0198. https://doi.org/10.21123/bsj.2018.15.2.0198
Deepak Negi, Radhe Shyam, Srinivasa Rao Nelamarri. Role of annealing temperature on structural and optical properties of MgTiO3 thin films. Mater Lett X. 2021; 11:100088. https://doi.org/10.1016/j.mlblux.2021.100088
Zainelabdin A, Zaman S, Amin G, Nur O., Deposition of well-aligned ZnO nanorods at 50◦C on metal semiconducting polymer, and copper oxides substrates and their structural and optical properties. Cryst Growth Des. 2010; 10(7): 3250–3256. https://doi.org/10.1021/cg100390x
Amorin LH, Martins LD, Urbano A. Commitment between roughness and crystallite size in the vanadium oxide thin film opto-electrochemical properties.J Mater Res. 2019; 22(1): e20180245. http://dx.doi.org/10.1590/1980-5373-MR-2018-0245