Further Results on (a, d) -total Edge Irregularity Strength of Graphs

Main Article Content

MUTHUGURUPACKIAM1 K
https://orcid.org/0000-0002-4627-0749
PANDIARAJ P
https://orcid.org/0000-0002-3556-7803
Gurusamy Rajendran
https://orcid.org/0000-0002-5691-9337
MUTHUSELVAM I
https://orcid.org/0000-0002-5691-9337

Abstract

Consider a simple graph   on vertices and edges together with a total  labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say  defined by  for all  where  Also, the value  is said to be the edge weight of . The total edge irregularity strength of the graph G is indicated by  and is the least  for which G admits   edge irregular h-labeling.  In this article,   for some common graph families are examined. In addition, an open problem is solved affirmatively.

Article Details

How to Cite
1.
Further Results on (a, d) -total Edge Irregularity Strength of Graphs. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2025 Jan. 22];20(6(Suppl.):2498. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8545
Section
article

How to Cite

1.
Further Results on (a, d) -total Edge Irregularity Strength of Graphs. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2025 Jan. 22];20(6(Suppl.):2498. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8545

References

Chartrand G, Jacobson MS, Lehel J, Oellermann OR, Ruiz S, Saba F. Irregular Networks. Congr Numer. 1988; 64: 187-192. https://www.scopus.com/record/display.uri?eid=2-s2.0-0039081400&origin=inward&txGid=bd47f5f74f 59d6aa8d8532bd5eb8904b

Baca M, Jendrol S, Miller M, Ryan J. On Irregular Total Labelings. Discrete Math. 2007; 307: 1378-1388. DOI: 10.1016/j.disc.2005.11.075

Salama F. On Total Edge Irregularity Strength of Polar Grid Graph. J Taibah Univ Sci. 2019; 13(1): 912-916. https://doi.org/10.1080/16583655.2019.1660086

Yeni Susanti, Yulia Indah Puspitasari, Husnul Khotimah. On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs. Iran J Math Sci Inform. 2020; 15 (1): 1-13. 10.21859/IJMSI.15.1.1

Ratnasari L, Susanti Y. Total Edge Irregularity Strength of Ladder-Related Graphs. Asian-Eur J Math. 2020; 13(04): 2020072. https://doi.org/10.1142/S1793557120500722

Muthu Guru Packiam K, Padmapriya R. (a, d) –Total Edge Irregularity Strength of Graphs. J Math Comput Sci. 2021; 11(4): 4436-4453. https://doi.org/10.28919/jmcs/5886

Adirasari RP, Suprajitno H, Susilowati L. The Dominant Metric Dimension of Corona Product Graphs. Baghdad Sci J. 2021 Jun. 1; 18(2): 0349. https://doi.org/10.21123/bsj.2021.18.2.0349

Omran AA, Oda HH. Hn-Domination in Graphs. Baghdad Sci J. 2019 Mar.17 ;16(1(Suppl.): 0242. https://doi.org/10.21123/bsj.2019.16.1(Suppl.).0242

Amreen J, Naduvath S. Order Sum Graph of a Group. Baghdad Sci J. 2023 Feb. 1; 20(1): 0181. https://doi.org/10.21123/bsj.2022.6480

Tarawneh I, Hasni R, Ahmad A. On the Edge Irregularity Strength of Grid Graphs. AKCE Int J Graphs Comb. 2020; 17(1): 414-418. https://doi.org/10.1016/j.akcej.2018.06.011

Gallian JA. A Dynamic Survey of Graph Labeling. Electron J Comb. 2018; 1(DynamicSurveys). https://experts.umn.edu/en/publications/a-dynamic-survey-of-graph-labeling-3