Removal of Some Heavy Metals from Polluted Water Using New Schiff Base for Polyacrylamide with Zeolite Nanocomposites

Authors

  • Zainab Sabeer Abdulsada Ministry of Environment, Baghdad, Iraq.
  • Sahar S. Hassan Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq. https://orcid.org/0000-0002-1985-7878
  • Sanaa Hitur Awad Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.21123/bsj.2024.8591

Keywords:

Acrylamide, Composite materials, contaminated water, Schiff base, Zeolite

Abstract

This work involved the preparation of a new Schiff base ligand derived from poly acrylamide and glutaraldehyde [(2S, 2'S) – N, N' - (pentane-1, 5-diylidene) bis (2- methylbutan amide)] (PAAG) with some heavy metals (Cr +3, Mn + 3, Fe + 3, Co + 2, Ni + 2, Cu + 2, Zn + 2, Cd + 2) to produce corresponding complexes. Schiff bases and their metal complexes are characterized using FTIR spectral, Uv-Vis spectroscopy, conductivity, magnetic moments, Thermal gravimetric analysis (TGA), x-ray diffraction, scanning electron microscope (SEM) and atomic force microscope (AFM). The prepared polymer was used with zeolite to form composite material to remove some of the elements from polluted water that were drawn from industrial water of the electric power plants in Dora and South Baghdad. Also, estimate the elements trace concentrations before and after using the prepared base by atomic absorption spectroscopy.

References

Sourbh T b, Bhawna S, Ankit V, Jyoti C, Sigitas T, Vijay K T. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod. 2018; 198: 143-159. https://doi.org/10.1016/j.jclepro.2018.06.259

Ashvinder K R, Vijai K G, Adesh KS, Stefan I V, Magda H A, Vijay K T. Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination. 2021; 520, 115359. https://doi.org/10.1016/j.desal.2021.115359.

Mohamed E M, Ebtissam A S, Mohamed A S, Mohamed S A. Removal of radioactive cobalt/zinc and some heavy metals from water using diethylenetriamine/2-pyridinecarboxaldehyde supported on NZVI. Microchem J. 2019; 145: 1102-1111. https://doi.org/10.1016/J.microc.2018.12.032.

Isiuku B O, Enyoh C E. Water pollution by heavy metal and Organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Anal Methods Environ Chem J. 2019; 2(3): 5-38. https://doi.org/10.24200/amecj.v2.i03.66.

Semla Z, Goc M. Acrylamide: a Common Food Toxin Related to Physiological Functions and Health. Physiol. Res. 2017; 66: 205-217. https://doi.org/10.33549/physiolres.933381

Teresa R, Pierpaolo F, Rosa G, Filomena S. Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes. 2021; 9: 719. https://doi.org/10.3390/pr9040719.

David E, Hansjoerg W, Ema Ž, David P, Christian S. Melt Polymerization of Acrylamide Initiated by Nucleophiles: A Route toward Highly Branched and Amorphous Polyamide. Appl poly Mater. 2021; 3: 2010-2026. https: //dx. doi.org/10.1021/acsapm. 1c00084?ref=pdf.

Hai P Z, Jing J C, Wen B J, Yu Q Y, Bo Y Z, Xiao Y L, et al . Synthesis and Mechanical Properties of Polyacrylamide Gel Doped with Graphene Oxide. Energies. 2022; 15: 5714. https://doi.org/10.3390/en15155714.

Olivier B, Clément C, Johann K, Frédéric B, Cédrick F, Céline B. Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules. 2022; 27: 42. https://doi.org/10.3390/molecules 27010042.

Glen R J, Zaidong L, Athina A, Danielle J L, Paul W, Qiang Z, et al. . Rapid Synthesis of Well-Defined Polyacrylamide by Aqueous Cu (0) - Mediated Reversible-Deactivation Radical Polymerization, Macromolecules. 2016; 49: 483−489. https://doi.org/10.1021/acs.macromol.5b01994.

Erzhan I K, Yelzhan S O, Zulkhair A M, Ruslan E N, Zhanar O Z, Aktota A M. Applicability of Zeolite from the Daubabinsk and Chankanai Deposits as a Sorbent for Natural Waters. Water. 2023; 15: 2231. https://doi.org/10.3390/w15122231.

Veena S, Syed S, Rama G, Irfan A, Rajib B, Nanthini S. Comprehensive Review on Zeolite-Based Nanocomposites for Treatment of Effluents from Wastewater. Nanomaterials. 2022; 12: 3199. https://doi.org/10.3390/nano12183199.

Luciano F, Gilberto R, Antônio E. Zeolite Application in Wastewater Treatment. Adsorp Sci Technol. 2022: 1-26. https://doi.org/10.1155/2022/4544104.

Begam T, Tomar R S, Nagpa A K, Singhal R. Synthesis of Poly(acrylamide-co-methyl methacrylate-covinyl amine-co-acrylic acid) Hydrogels by Hoffman Degradation and Their Interactions with Acetaminophen. J. App. Polym. Sci. 2004; 94: 40 –52. https://doi.org/10.1002/app.20706.

Ahmed G I, Ahmed Z S, Hamada A E, Mahmoud M S. Synthesis of Poly(Acrylamide-Graft-Chitosan) Hydrogel: Optimization of The Grafting Parameters and Swelling Studies. Am J Polym Sci. 2019; 5(2): 55-62. https://doi.org/10.11648/j.ajpst.

Nurşen S, Serkan Ö. Synthesis, Characterization and selectivity studies of poly(Acrylamide) incorporating Schiff Bases. Chinese J Polym Sci. 2009; 27(5): 675−683. https://doi.org/10.1142/S0256767909004370.

Anacona J R, Juan L R, Juan C. Synthesis, characterization and antibacterial activity of a Schiff base derived from cephalexin and sulphathiazole and its transition metal complexes. Spectrochim. Acta A: Mol Biomol Spectrosc. 2014; 129: 96-102. https://doi.org/10.1016/j.saa.2014.03.019.

Acemi A. Polymerization degree of chitosan affects structural and compositional changes in the cell walls, membrane lipids, and proteins in the leaves of Ipomoea purpurea: An FTIR spectroscopy study. Int J Biol Macromol. 2020; 16: 715-722. https://doi.org/10.1016/j.ijbiomac.2020.06.171.

Güzin P, Seda H, Mustafa E P. Molecular Structure, Vibrational, Spectral Investigation and Quantum Chemical DFT Calculations of Poly (N-isopropyl acrylamide-co-nbutyl methacrylate). Polym Korea. 2022; 46: 559-565. https://doi.org/10.7317/pk.2022.46.5.559

Nurhan G, Bahar B. Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities. J Sci. 2020; 33(3): 662-671. https://doi.org/10.35378/gujs.615818

Bouchra E, El Mehdi H, Asmae N, Mohamed B, Linda B, Sava K, et al. New Bi-Nuclear Nickel (II) Complex-Based Salen Schiff Base: Synthesis, Crystal Structure, Spectroscopic, Thermal, and Electrical Investigations. Chemistry. 2022; 4: 1193–1207.http://dx.doi.org/10.3390/chemistry4040080

Maged S A, Maha A A, Jawza S A. Physico-Chemical Study of Mn(II), Co(II), Cu(II), Cr(III), and Pd(II) Complexes with Schiff-Base and Aminopyrimidyl Derivatives and Anti-Cancer, Antioxidant, Antimicrobial Applications. Molecules. 2023; 28: 2555. https://doi.org/10.3390/molecules28062555

Sanaa A A, Sana H A. Synthesis, Characterization of Chitosan para- hydroxyl Benzaldehyde Schiff Base Linked Maleic Anhydride and the Evaluation of Its Antimicrobial Activities. Baghdad Sci. J. 2022; 19(6): 1265-1275. https://dx.doi.org/10.21123/bsj.2022.5655

Mathur N, Jain N, Sharma A K. Synthesis, characterization and biological analysis of some novel complexes of phenyl thiourea derivatives with copper. Open Chem J. 2018; 5(1). https://doi.org/10.2174/1874842201805010182

Ali M H, Ahmed O S, Bassem H H, Ahmed Y, Wael M A, Mohamed F M. Green Synthesis, Characterization, Antimicrobial and Anticancer Screening of New Metal Complexes Incorporating Schiff Base. ACS Omega. 2022; 7: 32418−32431. https://doi.org/10.1021/acsomega.2c03911.

Figgis B, Hitchman M. Ligand Filed Theory and its Application. J Chem Educ. 2002; 79(9): 1072. https://doi.org/10.5860/choice.38-3916

Nuha A A, Naser D S. Synthesis, Characterization, and Biological Activity of New Metal Ion Complexes with Schiff Base (Z)-3((E)-2-Hydroxybenzylidene) hydrazineylidene) indolin-2-one. J Med Chem Sci. 2023; 6(7): 1660-1674. https://doi.org/10.21608/EJCHEM.2022.124768.5552

Haneen R A, Sahar S H. Preparation and study of the physical properties of some complexes with Schiff base ligand for cefdinir derivative. Iraqi J Mark Res Consum Prot. 2022; 14(2): 110-120. http://dx.doi.org/10.28936/jmracpc14.2.2022.(13).

Shen X, Yang X, Su C, Yang J, Zhang L, Liu B, et al. Thermo-responsive photoluminescent silver clusters/hydrogel nanocomposites for highly sensitive and selective detection of Cr (VI). J Mater Chem. 2018; 6(8): 2088–2094. https://doi.org/10.1039/C7TC04495J

Sahar S H, Nafeesa J K, Zahraa A J. Synthesis Theoretical Study, and Biological Evaluation of Some Metal Ions with Ligand "Methyl -6-[2-(4-Hydroxyphenyl) -2-((1-Phenylethylidene) Amino) Acetamido] -2,2-Dimethyl-5—Oxo-1-Thia- 4 -Azabicyclo [3.2.0] Heptane-3- Carboxylate. Baghdad Sci. J. 2022; 20(1): 2078-8665. https://dx.doi.org/10.21123/bsj.2022.6359

Al Zoubi W, VianY J, Veyan T S, Al‐Hamdani A A S, Suzan D A,Yang Gon Kim et.al. Synthesis and bioactivity studies of novel Schiff bases and their complexes. J phys org chem. 2019; 4004: 1-7. https://doi.org/10.21123/bsj.2022.7289

Bayyappagari B, Shaik K P. Ferro and antiferromagnetic properties of MnO 2 and Ce 1− x Mn x O 2 nanoparticles. Appl Phys A. 2018; 124(1): 1–6. https://doi.org/10.1007/s00339-017-1395-2

Yan J, Nie W, Zhang H, Xiu Z, Bao Q, Wang H, et al. Synthesis and Performance Measurement of a Modified Polymer Dust Suppressant. Adv Powder Technol. 2020; 31: 792-803. https://doi.org/10.1016/j.apt.2019.11.033.

Acikses A, Hekim S, Oksuz F. Spectroscopic and Electronic Properties of a Copolymer and Its Metal Complexes: A Theoretical and Experimental Study. Chem. Phys. 2019; 527: 110469. https://dx.doi.org/10.1016/j.chemphys.2019.110469.

Da S, De A. Theoretical Calculations of 1H NMR Chemical Shifts for Nitrogenated Compounds in Chloroform Solution. Chem Phys. 2020; 528: 110479. http://dx.doi.org/10.1016/j.chemphys.2019.110479.

Ababneh T S, El-khateeb M, Tanash A K, AL-Shboul T M, Shammout M J, Jazzazi T M, et al. Synthesis, computational, anticancerous and antiproliferative effects of some copper, manganese and zinc complexes with ligands derived from symmetrical 2,2’- diamino -4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde. Pol J Chem Technol. 2021; 23: 7–15. https://doi.org/10.2478/pjct-2021-0002

Jazzazi T M A, Ababneh T S, Abboushi E K. Zinc(II) complexes of symmetrical tetradentate Schiff base ligands derived from 2,2’- diamino - 6,6’-dibromo - 4,4’ -dimethyl- 1,1’ -biphenyl- salicylaldehyde: Synthesis, characterization and computational study. Jordan J Chem. 2019; 14: 81–87.

Dilkes H L, Lant P A, Laycock B, Pratt S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Mar Pollut Bull. 2019; 142: 15–24. http://dx.doi.org/10.1016/j.marpolbul.2019.03.020.

Abd El-Salam H M, Mahmoud E S, Ali M E. Novel grafted hydrogel for Iron and ammonia removal from ground water, synthesis and computational chemistry study. Res Sq. 2022; 1: 1-32. https://doi.org/10.21203/rs.3.rs-2042510/v1.

Puspitasari T, Darwis D, Pangerteni D S, Oktaviani1 O, Sari M P. Synthesis and characterization of zeolite-g-polyacrylamide (Zeolite-g-PAAM) by using simultaneous irradiation techniqu. J Phys Conf Ser. 2020; 1436: 012069. https://doi.org/10.1088/1742-6596/1436/1/012069

Nabila Y, Jakub K, Pawel B, Wlodzimierz K, Piyush S. Electrochemically Initiated Synthesis of Polyacrylamide Microgels and Core-shell Particles. Polym Mater. 2022; 4: 452−462. https://doi.org/10.1021/acsapm.1c01359.

Agnieszka G, Tomasz K, Igor M, Witold M. Synthesis, Thermogravimetric Analysis, and Kinetic Study of Poly-N-Isopropylacrylamide with Varied Initiator Content. Polymers. 2023; 15: 2427. https://doi.org/10.3390/polym15112427

Abdelaziz E H, Saad D, Ahmed A, Mohammed E, Mohammed B, Sawsan M. Synthesis and Characterization of Polyacrylamide Crosslinked Copolymer for Enhanced Oil Recovery and Rock Wettability Alteration. Int J Oil Gas Coal Eng. 2015; 3(4): 47-59. https://doi.org/10.11648/J.OGCE.20150304.11

Hossein S A, Sheida K K, Javad S G, Maryam T. Crosslinked sulfonated polyacrylamide (Cross PAA SO3H) tethered to nano Fe3O4 as a superior catalyst for the synthesis of 1,3 thiazoles. BMC Chem. 2019; 13: 120. https://doi.org/10.1186/s13065-019-0637-0.

Peighambardoust S J, Aghamohammadi B O, Foroutan R, Arsalani N. Removal of malachite green using carboxymethyl cellulose-gpolyacrylamide /montmorillonite nanocomposite hydrogel. Int J Biol Macromol. 2020; 159: 1122–1131. https://doi.org/10.1016/j.ijbiomac.2020.05.093.

Siva S, Sana S, Kumar A, Venkataramana B, Vijaya K N. Development of poly (acrylamide co diallyl dimethyl ammonium chloride) nanogels and study of their ability as drug delivery devices. SN Appl Sci. 2019; 1: 1716. https://doi.org/10.1007/s42452-019-1742-3

Alaa A R, Farah M I, Ahmed A, Ekhlas A S, Evon A. Synthesis and photophysical study of divalent complexes of chelating Schiff base. Baghdad J Biochem Appl Bio Sci. 2020; 1: 5-17. https://doi.org/10.47419/bjbabs.v1i01.27

Kavitha E, Rajesh M P, Prabhakar S. Removal and recovery of heavy metals from aqueous solution using b-Cyclodextrin polymer and optimization of complexation conditions. Desalin Water Treat. 2018; 12: 219–230. https://dx.doi.org/10.5004/dwt.2018.22783

Manuel E, José R, Miquel G, Alberto T, Gretchen T, Keiko S. Removal of Heavy Metal Ions from Wastewater with Poly-ε-Caprolactone-Reinforced Chitosan Composite. Polymers. 2022; 14: 5196. https://doi.org/10.3390/polym14235196.

Abolanle S A, John A O O, Oluwaseyi S O, Oladotun W M, Thabo T I N, Bhekie B M. Heavy Metal Speciation, Microbial Study and Physicochemical Properties of Some Groundwaters: A Case Study. Chem Afr. 2020; 3: 211–226. https://doi.org/10.1007/s42250-019-00099-2

Saleem E, Sarah A Q, Nadhir A, Salah L Z. Function of Nanomaterials in Removing Heavy Metals for Water and Wastewater Remediation. Envir. 2022; 9: 123. https://doi.org/10.3390/environments9100123

Downloads

Issue

Section

article

How to Cite

1.
Removal of Some Heavy Metals from Polluted Water Using New Schiff Base for Polyacrylamide with Zeolite Nanocomposites . Baghdad Sci.J [Internet]. [cited 2024 Apr. 30];21(9). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8591