إزالة بعض المعادن الثقيلة من المياه الملوثة باستخدام قاعدة شيف جديدة للبولي أكريلاميد مع مركبات النانو زيولايت
محتوى المقالة الرئيسي
الملخص
تضمن هذا العمل تحضير ليكند قاعدة شيف جديدة مشتقة من مادة البولي أكريلاميد والكلوترالديهايد [(2S, 2'S) – N, N' - (pentane-1, 5-diylidene) bis (2- methylbutan amide)] مع بعض المعادن الثقيلة (Cr + 3 Mn + 3 , Fe + 3 , ,Co + 2, Ni + 2 ,Cu + 2 Zn + 2 , Cd + 2,) لتنتج المعقدات المقابلة. تم تشخيص قواعد شيف ومعقداتها المعدنية بأستخدام طيف الأشعة تحت الحمراء والأشعة المرئية وفوق البنفسجية، والتوصيلية ,وقيم المغناطيسية والتحليل الحراري الوزني وحيود الأشعة السينية ومجهرالمسح الالكتروني ومجهر القوة الذرية. تم استخدام البوليمرات المحضرة في إزالة عدد من العناصر من المياه الملوثة المسحوبة من المياه الصناعية لمحطتي الطاقة الكهربائية في الدورة وجنوب بغداد وتقدير التراكيز الضئيلة لتلك العناصر قبل وبعد استخدام القاعدة المحضرة بواسطة مطيافية الامتصاص الذري.
Received 14/02/2023
Revised 16/07/2023
Accepted 18/07/2023
Published Online First 20/02/2024
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Sourbh T b, Bhawna S, Ankit V, Jyoti C, Sigitas T, Vijay K T. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod. 2018; 198: 143-159. https://doi.org/10.1016/j.jclepro.2018.06.259
Ashvinder K R, Vijai K G, Adesh KS, Stefan I V, Magda H A, Vijay K T. Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination. 2021; 520, 115359. https://doi.org/10.1016/j.desal.2021.115359.
Mohamed E M, Ebtissam A S, Mohamed A S, Mohamed S A. Removal of radioactive cobalt/zinc and some heavy metals from water using diethylenetriamine/2-pyridinecarboxaldehyde supported on NZVI. Microchem J. 2019; 145: 1102-1111. https://doi.org/10.1016/J.microc.2018.12.032.
Isiuku B O, Enyoh C E. Water pollution by heavy metal and Organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Anal Methods Environ Chem J. 2019; 2(3): 5-38. https://doi.org/10.24200/amecj.v2.i03.66.
Semla Z, Goc M. Acrylamide: a Common Food Toxin Related to Physiological Functions and Health. Physiol. Res. 2017; 66: 205-217. https://doi.org/10.33549/physiolres.933381
Teresa R, Pierpaolo F, Rosa G, Filomena S. Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes. 2021; 9: 719. https://doi.org/10.3390/pr9040719.
David E, Hansjoerg W, Ema Ž, David P, Christian S. Melt Polymerization of Acrylamide Initiated by Nucleophiles: A Route toward Highly Branched and Amorphous Polyamide. Appl poly Mater. 2021; 3: 2010-2026. https: //dx. doi.org/10.1021/acsapm. 1c00084?ref=pdf.
Hai P Z, Jing J C, Wen B J, Yu Q Y, Bo Y Z, Xiao Y L, et al . Synthesis and Mechanical Properties of Polyacrylamide Gel Doped with Graphene Oxide. Energies. 2022; 15: 5714. https://doi.org/10.3390/en15155714.
Olivier B, Clément C, Johann K, Frédéric B, Cédrick F, Céline B. Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules. 2022; 27: 42. https://doi.org/10.3390/molecules 27010042.
Glen R J, Zaidong L, Athina A, Danielle J L, Paul W, Qiang Z, et al. . Rapid Synthesis of Well-Defined Polyacrylamide by Aqueous Cu (0) - Mediated Reversible-Deactivation Radical Polymerization, Macromolecules. 2016; 49: 483−489. https://doi.org/10.1021/acs.macromol.5b01994.
Erzhan I K, Yelzhan S O, Zulkhair A M, Ruslan E N, Zhanar O Z, Aktota A M. Applicability of Zeolite from the Daubabinsk and Chankanai Deposits as a Sorbent for Natural Waters. Water. 2023; 15: 2231. https://doi.org/10.3390/w15122231.
Veena S, Syed S, Rama G, Irfan A, Rajib B, Nanthini S. Comprehensive Review on Zeolite-Based Nanocomposites for Treatment of Effluents from Wastewater. Nanomaterials. 2022; 12: 3199. https://doi.org/10.3390/nano12183199.
Luciano F, Gilberto R, Antônio E. Zeolite Application in Wastewater Treatment. Adsorp Sci Technol. 2022: 1-26. https://doi.org/10.1155/2022/4544104.
Begam T, Tomar R S, Nagpa A K, Singhal R. Synthesis of Poly(acrylamide-co-methyl methacrylate-covinyl amine-co-acrylic acid) Hydrogels by Hoffman Degradation and Their Interactions with Acetaminophen. J. App. Polym. Sci. 2004; 94: 40 –52. https://doi.org/10.1002/app.20706.
Ahmed G I, Ahmed Z S, Hamada A E, Mahmoud M S. Synthesis of Poly(Acrylamide-Graft-Chitosan) Hydrogel: Optimization of The Grafting Parameters and Swelling Studies. Am J Polym Sci. 2019; 5(2): 55-62. https://doi.org/10.11648/j.ajpst.
Nurşen S, Serkan Ö. Synthesis, Characterization and selectivity studies of poly(Acrylamide) incorporating Schiff Bases. Chinese J Polym Sci. 2009; 27(5): 675−683. https://doi.org/10.1142/S0256767909004370.
Anacona J R, Juan L R, Juan C. Synthesis, characterization and antibacterial activity of a Schiff base derived from cephalexin and sulphathiazole and its transition metal complexes. Spectrochim. Acta A: Mol Biomol Spectrosc. 2014; 129: 96-102. https://doi.org/10.1016/j.saa.2014.03.019.
Acemi A. Polymerization degree of chitosan affects structural and compositional changes in the cell walls, membrane lipids, and proteins in the leaves of Ipomoea purpurea: An FTIR spectroscopy study. Int J Biol Macromol. 2020; 16: 715-722. https://doi.org/10.1016/j.ijbiomac.2020.06.171.
Güzin P, Seda H, Mustafa E P. Molecular Structure, Vibrational, Spectral Investigation and Quantum Chemical DFT Calculations of Poly (N-isopropyl acrylamide-co-nbutyl methacrylate). Polym Korea. 2022; 46: 559-565. https://doi.org/10.7317/pk.2022.46.5.559
Nurhan G, Bahar B. Synthesis of New Ligands Containing Azomethine Group and Investigation of Antioxidant, Antiurease Activities. J Sci. 2020; 33(3): 662-671. https://doi.org/10.35378/gujs.615818
Bouchra E, El Mehdi H, Asmae N, Mohamed B, Linda B, Sava K, et al. New Bi-Nuclear Nickel (II) Complex-Based Salen Schiff Base: Synthesis, Crystal Structure, Spectroscopic, Thermal, and Electrical Investigations. Chemistry. 2022; 4: 1193–1207.http://dx.doi.org/10.3390/chemistry4040080
Maged S A, Maha A A, Jawza S A. Physico-Chemical Study of Mn(II), Co(II), Cu(II), Cr(III), and Pd(II) Complexes with Schiff-Base and Aminopyrimidyl Derivatives and Anti-Cancer, Antioxidant, Antimicrobial Applications. Molecules. 2023; 28: 2555. https://doi.org/10.3390/molecules28062555
Sanaa A A, Sana H A. Synthesis, Characterization of Chitosan para- hydroxyl Benzaldehyde Schiff Base Linked Maleic Anhydride and the Evaluation of Its Antimicrobial Activities. Baghdad Sci. J. 2022; 19(6): 1265-1275. https://dx.doi.org/10.21123/bsj.2022.5655
Mathur N, Jain N, Sharma A K. Synthesis, characterization and biological analysis of some novel complexes of phenyl thiourea derivatives with copper. Open Chem J. 2018; 5(1). https://doi.org/10.2174/1874842201805010182
Ali M H, Ahmed O S, Bassem H H, Ahmed Y, Wael M A, Mohamed F M. Green Synthesis, Characterization, Antimicrobial and Anticancer Screening of New Metal Complexes Incorporating Schiff Base. ACS Omega. 2022; 7: 32418−32431. https://doi.org/10.1021/acsomega.2c03911.
Figgis B, Hitchman M. Ligand Filed Theory and its Application. J Chem Educ. 2002; 79(9): 1072. https://doi.org/10.5860/choice.38-3916
Nuha A A, Naser D S. Synthesis, Characterization, and Biological Activity of New Metal Ion Complexes with Schiff Base (Z)-3((E)-2-Hydroxybenzylidene) hydrazineylidene) indolin-2-one. J Med Chem Sci. 2023; 6(7): 1660-1674. https://doi.org/10.21608/EJCHEM.2022.124768.5552
Haneen R A, Sahar S H. Preparation and study of the physical properties of some complexes with Schiff base ligand for cefdinir derivative. Iraqi J Mark Res Consum Prot. 2022; 14(2): 110-120. http://dx.doi.org/10.28936/jmracpc14.2.2022.(13).
Shen X, Yang X, Su C, Yang J, Zhang L, Liu B, et al. Thermo-responsive photoluminescent silver clusters/hydrogel nanocomposites for highly sensitive and selective detection of Cr (VI). J Mater Chem. 2018; 6(8): 2088–2094. https://doi.org/10.1039/C7TC04495J
Sahar S H, Nafeesa J K, Zahraa A J. Synthesis Theoretical Study, and Biological Evaluation of Some Metal Ions with Ligand "Methyl -6-[2-(4-Hydroxyphenyl) -2-((1-Phenylethylidene) Amino) Acetamido] -2,2-Dimethyl-5—Oxo-1-Thia- 4 -Azabicyclo [3.2.0] Heptane-3- Carboxylate. Baghdad Sci. J. 2022; 20(1): 2078-8665. https://dx.doi.org/10.21123/bsj.2022.6359
Al Zoubi W, VianY J, Veyan T S, Al‐Hamdani A A S, Suzan D A,Yang Gon Kim et.al. Synthesis and bioactivity studies of novel Schiff bases and their complexes. J phys org chem. 2019; 4004: 1-7. https://doi.org/10.21123/bsj.2022.7289
Bayyappagari B, Shaik K P. Ferro and antiferromagnetic properties of MnO 2 and Ce 1− x Mn x O 2 nanoparticles. Appl Phys A. 2018; 124(1): 1–6. https://doi.org/10.1007/s00339-017-1395-2
Yan J, Nie W, Zhang H, Xiu Z, Bao Q, Wang H, et al. Synthesis and Performance Measurement of a Modified Polymer Dust Suppressant. Adv Powder Technol. 2020; 31: 792-803. https://doi.org/10.1016/j.apt.2019.11.033.
Acikses A, Hekim S, Oksuz F. Spectroscopic and Electronic Properties of a Copolymer and Its Metal Complexes: A Theoretical and Experimental Study. Chem. Phys. 2019; 527: 110469. https://dx.doi.org/10.1016/j.chemphys.2019.110469.
Da S, De A. Theoretical Calculations of 1H NMR Chemical Shifts for Nitrogenated Compounds in Chloroform Solution. Chem Phys. 2020; 528: 110479. http://dx.doi.org/10.1016/j.chemphys.2019.110479.
Ababneh T S, El-khateeb M, Tanash A K, AL-Shboul T M, Shammout M J, Jazzazi T M, et al. Synthesis, computational, anticancerous and antiproliferative effects of some copper, manganese and zinc complexes with ligands derived from symmetrical 2,2’- diamino -4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde. Pol J Chem Technol. 2021; 23: 7–15. https://doi.org/10.2478/pjct-2021-0002
Jazzazi T M A, Ababneh T S, Abboushi E K. Zinc(II) complexes of symmetrical tetradentate Schiff base ligands derived from 2,2’- diamino - 6,6’-dibromo - 4,4’ -dimethyl- 1,1’ -biphenyl- salicylaldehyde: Synthesis, characterization and computational study. Jordan J Chem. 2019; 14: 81–87.
Dilkes H L, Lant P A, Laycock B, Pratt S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Mar Pollut Bull. 2019; 142: 15–24. http://dx.doi.org/10.1016/j.marpolbul.2019.03.020.
Abd El-Salam H M, Mahmoud E S, Ali M E. Novel grafted hydrogel for Iron and ammonia removal from ground water, synthesis and computational chemistry study. Res Sq. 2022; 1: 1-32. https://doi.org/10.21203/rs.3.rs-2042510/v1.
Puspitasari T, Darwis D, Pangerteni D S, Oktaviani1 O, Sari M P. Synthesis and characterization of zeolite-g-polyacrylamide (Zeolite-g-PAAM) by using simultaneous irradiation techniqu. J Phys Conf Ser. 2020; 1436: 012069. https://doi.org/10.1088/1742-6596/1436/1/012069
Nabila Y, Jakub K, Pawel B, Wlodzimierz K, Piyush S. Electrochemically Initiated Synthesis of Polyacrylamide Microgels and Core-shell Particles. Polym Mater. 2022; 4: 452−462. https://doi.org/10.1021/acsapm.1c01359.
Agnieszka G, Tomasz K, Igor M, Witold M. Synthesis, Thermogravimetric Analysis, and Kinetic Study of Poly-N-Isopropylacrylamide with Varied Initiator Content. Polymers. 2023; 15: 2427. https://doi.org/10.3390/polym15112427
Abdelaziz E H, Saad D, Ahmed A, Mohammed E, Mohammed B, Sawsan M. Synthesis and Characterization of Polyacrylamide Crosslinked Copolymer for Enhanced Oil Recovery and Rock Wettability Alteration. Int J Oil Gas Coal Eng. 2015; 3(4): 47-59. https://doi.org/10.11648/J.OGCE.20150304.11
Hossein S A, Sheida K K, Javad S G, Maryam T. Crosslinked sulfonated polyacrylamide (Cross PAA SO3H) tethered to nano Fe3O4 as a superior catalyst for the synthesis of 1,3 thiazoles. BMC Chem. 2019; 13: 120. https://doi.org/10.1186/s13065-019-0637-0.
Peighambardoust S J, Aghamohammadi B O, Foroutan R, Arsalani N. Removal of malachite green using carboxymethyl cellulose-gpolyacrylamide /montmorillonite nanocomposite hydrogel. Int J Biol Macromol. 2020; 159: 1122–1131. https://doi.org/10.1016/j.ijbiomac.2020.05.093.
Siva S, Sana S, Kumar A, Venkataramana B, Vijaya K N. Development of poly (acrylamide co diallyl dimethyl ammonium chloride) nanogels and study of their ability as drug delivery devices. SN Appl Sci. 2019; 1: 1716. https://doi.org/10.1007/s42452-019-1742-3
Alaa A R, Farah M I, Ahmed A, Ekhlas A S, Evon A. Synthesis and photophysical study of divalent complexes of chelating Schiff base. Baghdad J Biochem Appl Bio Sci. 2020; 1: 5-17. https://doi.org/10.47419/bjbabs.v1i01.27
Kavitha E, Rajesh M P, Prabhakar S. Removal and recovery of heavy metals from aqueous solution using b-Cyclodextrin polymer and optimization of complexation conditions. Desalin Water Treat. 2018; 12: 219–230. https://dx.doi.org/10.5004/dwt.2018.22783
Manuel E, José R, Miquel G, Alberto T, Gretchen T, Keiko S. Removal of Heavy Metal Ions from Wastewater with Poly-ε-Caprolactone-Reinforced Chitosan Composite. Polymers. 2022; 14: 5196. https://doi.org/10.3390/polym14235196.
Abolanle S A, John A O O, Oluwaseyi S O, Oladotun W M, Thabo T I N, Bhekie B M. Heavy Metal Speciation, Microbial Study and Physicochemical Properties of Some Groundwaters: A Case Study. Chem Afr. 2020; 3: 211–226. https://doi.org/10.1007/s42250-019-00099-2
Saleem E, Sarah A Q, Nadhir A, Salah L Z. Function of Nanomaterials in Removing Heavy Metals for Water and Wastewater Remediation. Envir. 2022; 9: 123. https://doi.org/10.3390/environments9100123