A Multi-Objective Facility Coverage Location Problem for Emergency Medical Service Decisions in Hajj

Authors

  • Huda Zaki Naji Department of Mathematics, College of Science, University of Basrah, Basra, Iraq.
  • Mohanad Al-Behadili Department of Mathematics, College of Science, University of Basrah, Basra, Iraq. https://orcid.org/0000-0002-5210-6865
  • Mohammad Sari Kadim Department of Mathematics, College of Science, University of Basrah, Basra, Iraq. https://orcid.org/0000-0001-7249-444X

DOI:

https://doi.org/10.21123/bsj.2023.8737

Keywords:

Comprehensive search algorithm, Emergency medical services, Facility coverage location problem, Hajj Pilgrim, Incremental search algorithm, Multi-objective model

Abstract

This paper proposes a multi-objective facility model of coverage location problem to determine the number, locations, and redeployments of Emergency Medical Services (EMS) system. The EMS runs with two types of ambulances, Basic Life Support (BLS) and Advance Life Support (ALS). The suggested Multi-objective Coverage Location model (MO-CL) considers a bi-objective function, which is minimizing the EMS costs and the fatigue of EMS crew members. This can be managed by reducing the number of redeployments for both types of ambulances while still providing the required coverage levels. The MO-CL model is based on the approximation hypercube model that eliminates the assumptions of autonomous ambulance operation and system-wide busy probability. It can be solved by applying a modified MO-CL search algorithm. The model and solution method have been applied for a case study based on real data collected from the Al Noor Specialist Hospital in Makkah, Saudi Arabia during the period of fifteen days of Hajj pilgrimage. The results showed that, to achieve the 95% coverage threshold of critical and non-critical demand, the MO-CL model needs at least 64 ambulances (29 ALS, 12 for BLS backups, and 23 for BLS) and 19 redeployments for every day (9 for ALS, 2 for BLS backup, and 8 for BLS).

Author Biography

Mohanad Al-Behadili, Department of Mathematics, College of Science, University of Basrah, Basra, Iraq.

دكتوراه في علوم الرياضيات، بحوث العمليات والامثلية.

أعمل حالياً  كباحث (مابعد الدكتوراه) في قسم الرياضيات والفيزياء في جامعة بورتسموث في المملكة المتحدة.

وأعمل كأستاذ مساعد في قسم الرياضيات، كلية العلوم، جامعة البصرة.

References

Hajipour V, Fattahi P, Tavana M, Di Caprio D. Multi-objective Multi-layer Congested Facility Location-allocation Problem Optimization with Pareto-based Meta-heuristics. Appl Math Model. 2016; 40(7-8): 4948-4969. https://doi.org/10.1016/j.apm.2015.12.013

Naji HZ, AL-Behadili M, AL-Maliky F. Two Server Dynamic Coverage Location Model under Stochastic Travel Time. Int J Appl Comput Math. 2021;7(1). https://doi.org/10.1007/s40819-021-00950-6

Hotelling H. Stability in Competition. Econ. J. 1929; 39: 41-57. https://www.proquest.com/openview/40f58c8b5a08ebbfe20c9242a3d3bee7/1?pq-origsite=gscholar&cbl=40735

Eriskin L, Karatas M. Applying robust optimization to the shelter location–allocation problem: a case study for Istanbul. Ann Oper Res. Published online 2022. https://doi.org/10.1007/s10479-022-04627-1

Karatas M, Yakıcı E. An iterative solution approach to a multi-objective facility location problem. Appl Soft Comput J. 2018; 62: 272-287. https://doi.org/10.1016/j.asoc.2017.10.035

Rabbani M, Heidari R, Farrokhi-Asl H, Rahimi N. Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. J Clean Prod. 2018; 170: 227-241. https://doi.org/10.1016/j.jclepro.2017.09.029

Silva F, Serra D. Locating emergency services with different priorities: The priority queuing covering location problem. J Oper Res Soc. 2008; 59(9): 1229-1238. https://doi.org/10.1057/palgrave.jors.2602473

Yoon S, Albert LA. An expected coverage model with a cutoff priority queue. Health Care Manag Sci. 2018; 21(4): 517-533. https://doi.org/10.1007/s10729-017-9409-3

Esmaelian M, Tavana M, Santos Arteaga FJ, Mohammadi S. A multicriteria spatial decision support system for solving emergency service station location problems. Int J Geogr Inf Sci. 2015; 29(7): 1187-1213. https://doi.org/10.1080/13658816.2015.1025790

Karatas M, Yakıcı E. A multi-objective location analytics model for temporary emergency service center location decisions in disasters. Decis Anal J. 2021; 1(July): 100004. https://doi.org/10.1016/j.dajour.2021.100004

Shahparvari S, Fadaki M, Chhetri P. Spatial accessibility of fire stations for enhancing operational response in Melbourne. Fire Saf J. 2020; 117: 103149. https://doi.org/10.1016/j.firesaf.2020.103149

Kiran KC, Corcoran J, Chhetri P. Measuring the spatial accessibility to fire stations using enhanced floating catchment method. Socio-Econ Plan. 2020; 69. https://doi.org/10.1016/j.seps.2018.11.010

Fukushima F, Moriya T. Objective evaluation study on the shortest time interval from fire department departure to hospital arrival in emergency medical services using a global positioning system ― potential for time savings during ambulance running. IATSS Res. 2021; 45(2): 182-189. https://doi.org/10.1016/j.iatssr.2020.08.001

Han B, Hu M, Zheng J, Tang T. Site selection of fire stations in large cities based on actual spatiotemporal demands: A case study of Nanjing City. ISPRS Int J Geo-Inf. 2021; 10(8). https://doi.org/10.3390/ijgi10080542

Adalı EA, Tuş A. Hospital site selection with distance-based multi-criteria decision-making methods. Int J Healthc Manag. 2021; 14(2): 534-544. https://doi.org/10.1080/20479700.2019.1674005

Drezner T, Drezner Z, Salhi S. A multi-objective heuristic approach for the casualty collection points location problem. J Oper Res Soc. 2006; 57(6): 727-734. https://doi.org/10.1057/palgrave.jors.2602047

Jenkins PR, Lunday BJ, Robbins MJ. Robust, multi-objective optimization for the military medical evacuation location-allocation problem. Omega (United Kingdom). 2020; 97. https://doi.org/10.1016/j.omega.2019.07.004

Mohammed AM, Duffuaa SO. A tabu search based algorithm for the optimal design of multi-objective multi-product supply chain networks. Expert Syst Appl. 2020; 140. https://doi.org/10.1016/j.eswa.2019.07.025

He L, Xie Z. Optimization of Urban Shelter Locations Using Bi-Level Multi-Objective Location-Allocation Model. Int J Environ Res Public Health. 2022; 19(7). https://doi.org/10.3390/ijerph19074401

Zhang H, Zhang K, Chen Y, Ma L. Multi-objective two-level medical facility location problem and tabu search algorithm. Inf Sci (Ny). 2022; 608: 734-756. https://doi.org/10.1016/j.ins.2022.06.083

Wang C, Wang Z, Tian Y, Zhang X, Xiao J. A Dual-Population Based Evolutionary Algorithm for Multi-Objective Location Problem Under Uncertainty of Facilities. IEEE Trans Intell. Transp. Syst. 2022; 23(7): 7692-7707. https://doi.org/10.1109/TITS.2021.3071786

Chobar AP, Amin Adibi M, Kazemi A. A novel multi-objective model for hub location problem considering dynamic demand and environmental issues. J Ind Eng Manag Stud. 2021; 8(1): 1-31. https://doi.org/10.22116/jiems.2021.239719.1373

Yakıcı E, Karatas M. Solving a multi-objective heterogeneous sensor network location problem with genetic algorithm. Comput Networks. 2021; 192(September 2020): 108041. https://doi.org/10.1016/j.comnet.2021.108041

Olivos C, Caceres H. Multi-Objective Optimization of Ambulance Location in Antofagasta, Chile. Transport. 2022; 37(3): 177-189. https://doi.org/10.3846/transport.2022.17073

Karatas M. A dynamic multi-objective location-allocation model for search and rescue assets. Eur J Oper Res. 2021; 288(2): 620-633. https://doi.org/10.1016/j.ejor.2020.06.003

Doolun IS, Ponnambalam SG, Subramanian N, Kanagaraj G. Data driven hybrid evolutionary analytical approach for multi objective location allocation decisions: Automotive green supply chain empirical evidence. Comput Oper Res. 2018; 98: 265-283. https://doi.org/10.1016/j.cor.2018.01.008

Naji HZ, Ghani NA. Dynamic Redeployment Coverage Location Model with Two Types of Servers. Proc 3ed Int Conf . Adv Econ , Manag Soc Study-EMS. 2015: 42-45. https://doi.org/10.15224/ 978-1-63248-058-3-60

Al-Behadili HNK. Improved firefly algorithm with variable neighborhood search for data clustering. Baghdad Sci J. 2022; 19(2): 409-421. https://doi.org/10.21123/BSJ.2022.19.2.0409

Al-Behadili M, Ouelhadj D, Jones D. Multi-objective Particle Swarm Optimisation for Robust Dynamic Scheduling in a Permutation Flow Shop. In: Al. AMM et, ed. Intelligent Systems Design and Applications, Advances in Intelligent Systems and Computing 557. Vol 2. Springer International Publishing AG 2017; 2017:498-507. https://doi.org/10.1007/978-3-319-53480-0

Iqbal Z, Ilyas R, Chan HY, Ahmed N. Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach. Baghdad Sci J. 2021; 18(4(Suppl.): 1465. https://doi.org/10.21123/bsj.2021.18.4(Suppl.).1465

Jarvis JP. Approximating the Equilibrium Behavior of Multi-Server Loss Systems. Manage Sci. 1985; 31(2): 235-239. https://doi.org/10.1287/mnsc.31.2.235

Larson RC. A hypercube queuing model for facility location and redistricting in urban emergency services. Comput Oper Res. 1974; 1(1): 67-95. https://doi.org/10.1016/0305-0548(74)90076-8

Larson RC. Approximating the Performance of Urban Emergency Service Systems. Oper Res. 1975; 23(5): 845-868. https://doi.org/10.1287/opre.23.5.845

Gendreau M, Potvin JY. Tabu Search BT-Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. In: Burke EK, Kendall G, eds. Springer US; 2005: 165-186. https://doi.org/10.1007/0-387-28356-0_6

Saydam C, Rajagopalan HK, Sharer E, Lawrimore-Belanger K. The dynamic redeployment coverage location model. Heal Syst. 2013; 2(2): 103-119. https://doi.org/10.1057/hs.2012.27

Al Nabusi HH. The Crowd Psychology of the Hajj. University of Sussex; 2015. http://sro.sussex.ac.uk/id/eprint/55257/1/Al_Nabulsi%2C_Hani_Hashim.pdf

Al-Harthi ASM, Al-Harbi M. Accidental injuries during muslim pilgrimage. Saudi Med J. 2001; 22(6): 523-525. https://pubmed.ncbi.nlm.nih.gov/11426245/

Kurdi O. Crowd Modelling and Simulation. The University of Sheffield; 2017. https://etheses.whiterose.ac.uk/18669/

Memish ZA, Zumla A, Alhakeem RF, Assiri A, Turkestani A, Al Harby K, et al. Hajj: Infectious disease surveillance and control. Lancet. 2014; 383(9934): 2073-2082. https://doi.org/10.1016/S0140-6736(14)60381-0

Aldossari M,1 Aljoudi A, Celentano D. Health issues in the Hajj pilgrimage: a literature review. East Mediterr Health J. 2019; 25(10): 744-753. https://applications.emro.who.int/emhj/v25/10/10203397-2019-2510-744-753.pdf

Ahmed QA, Arabi YM, Memish ZA. Health risks at the Hajj. Lancet (London, England). 2006; 367(9515): 1008-1015. https://doi.org/10.1016/S0140-6736(06)68429-8

Almehmadi M, Pescaroli G, Alqahtani J, Oyelade T. Investigating health risk perceptions during the Hajj: Pre-Travel advice and adherence to preventative health measures. Afr J Respir Med. 2021; 16(2). https://discovery.ucl.ac.uk/id/eprint/10140290

Long IJ, Flaherty GT. Traumatic Travels – A Review of Accidental Death and Injury in International Travellers. Int J Travel Med Glob Heal. 2018; 6(2): 48-53. https://doi.org/10.15171/ijtmgh.2018.10

Downloads

Issue

Section

article

How to Cite

1.
A Multi-Objective Facility Coverage Location Problem for Emergency Medical Service Decisions in Hajj. Baghdad Sci.J [Internet]. [cited 2024 Apr. 30];21(6). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8737