مشكلة موقع تغطية المرافق متعددة الأغراض لقرارات الخدمات الطبية الطارئة في الحج
محتوى المقالة الرئيسي
الملخص
يقترح هذا البحث نموذج منشأة متعدد الأغراض لمشكلة موقع التغطية لتحديد عدد ومواقع وعمليات إعادة نشر نظام EMS الذي يعمل مع سيارتي إسعاف من النوع: دعم الحياة المتقدم (ALS) ودعم الحياة الأساسي (BLS) . يأخذ نموذج التغطية متعددة الأغراض المقترح (MO-CL) في الحسبان هدفين: 1) خفض تكاليف نظام EMS عن طريق الحد من نوعي سيارات الإسعاف ALS و BLS. 2) تقليل إجهاد أعضاء طاقم EMS عن طريق الحد من عدد إعادة الانتشار لنوعين من سيارات الإسعاف مع الاستمرار في توفير مستويات التغطية المطلوبة. يمكن حل نموذج MO-CL من خلال تطبيق خوارزمية البحث MO-CL. يعتمد النموذج المقترح على نموذج المكعب الفائق التقريبي، والذي يلغي افتراضات تشغيل سيارة الإسعاف المستقلة واحتمال الانشغال على مستوى النظام. تم استخدام النموذج في دراسة حالة بناءً على بيانات حقيقية تم جمعها من مستشفى النور التخصصي في مكة المكرمة خلال فترة الحج التي استمرت 15 يومًا. لتحقيق عتبة تغطية 95 في المائة للطلب الحاسم وغير الحاسم ، يتطلب نموذج MO-CL ما لا يقل عن 64 سيارة إسعاف (29 ALS و 12 BLS احتياطيًا و 23 BLS) و 19 عملية إعادة نشر (9 ALS و 2 للنسخ الاحتياطي BLS ، و 8 BLS) كل يوم.
Received 12/03/2023
Revised 05/09/2023
Accepted 07/09/2023
Published Online First 20/11/2023
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Hajipour V, Fattahi P, Tavana M, Di Caprio D. Multi-objective Multi-layer Congested Facility Location-allocation Problem Optimization with Pareto-based Meta-heuristics. Appl Math Model. 2016; 40(7-8): 4948-4969. https://doi.org/10.1016/j.apm.2015.12.013
Naji HZ, AL-Behadili M, AL-Maliky F. Two Server Dynamic Coverage Location Model under Stochastic Travel Time. Int J Appl Comput Math. 2021;7(1). https://doi.org/10.1007/s40819-021-00950-6
Hotelling H. Stability in Competition. Econ. J. 1929; 39: 41-57. https://www.proquest.com/openview/40f58c8b5a08ebbfe20c9242a3d3bee7/1?pq-origsite=gscholar&cbl=40735
Eriskin L, Karatas M. Applying robust optimization to the shelter location–allocation problem: a case study for Istanbul. Ann Oper Res. Published online 2022. https://doi.org/10.1007/s10479-022-04627-1
Karatas M, Yakıcı E. An iterative solution approach to a multi-objective facility location problem. Appl Soft Comput J. 2018; 62: 272-287. https://doi.org/10.1016/j.asoc.2017.10.035
Rabbani M, Heidari R, Farrokhi-Asl H, Rahimi N. Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. J Clean Prod. 2018; 170: 227-241. https://doi.org/10.1016/j.jclepro.2017.09.029
Silva F, Serra D. Locating emergency services with different priorities: The priority queuing covering location problem. J Oper Res Soc. 2008; 59(9): 1229-1238. https://doi.org/10.1057/palgrave.jors.2602473
Yoon S, Albert LA. An expected coverage model with a cutoff priority queue. Health Care Manag Sci. 2018; 21(4): 517-533. https://doi.org/10.1007/s10729-017-9409-3
Esmaelian M, Tavana M, Santos Arteaga FJ, Mohammadi S. A multicriteria spatial decision support system for solving emergency service station location problems. Int J Geogr Inf Sci. 2015; 29(7): 1187-1213. https://doi.org/10.1080/13658816.2015.1025790
Karatas M, Yakıcı E. A multi-objective location analytics model for temporary emergency service center location decisions in disasters. Decis Anal J. 2021; 1(July): 100004. https://doi.org/10.1016/j.dajour.2021.100004
Shahparvari S, Fadaki M, Chhetri P. Spatial accessibility of fire stations for enhancing operational response in Melbourne. Fire Saf J. 2020; 117: 103149. https://doi.org/10.1016/j.firesaf.2020.103149
Kiran KC, Corcoran J, Chhetri P. Measuring the spatial accessibility to fire stations using enhanced floating catchment method. Socio-Econ Plan. 2020; 69. https://doi.org/10.1016/j.seps.2018.11.010
Fukushima F, Moriya T. Objective evaluation study on the shortest time interval from fire department departure to hospital arrival in emergency medical services using a global positioning system ― potential for time savings during ambulance running. IATSS Res. 2021; 45(2): 182-189. https://doi.org/10.1016/j.iatssr.2020.08.001
Han B, Hu M, Zheng J, Tang T. Site selection of fire stations in large cities based on actual spatiotemporal demands: A case study of Nanjing City. ISPRS Int J Geo-Inf. 2021; 10(8). https://doi.org/10.3390/ijgi10080542
Adalı EA, Tuş A. Hospital site selection with distance-based multi-criteria decision-making methods. Int J Healthc Manag. 2021; 14(2): 534-544. https://doi.org/10.1080/20479700.2019.1674005
Drezner T, Drezner Z, Salhi S. A multi-objective heuristic approach for the casualty collection points location problem. J Oper Res Soc. 2006; 57(6): 727-734. https://doi.org/10.1057/palgrave.jors.2602047
Jenkins PR, Lunday BJ, Robbins MJ. Robust, multi-objective optimization for the military medical evacuation location-allocation problem. Omega (United Kingdom). 2020; 97. https://doi.org/10.1016/j.omega.2019.07.004
Mohammed AM, Duffuaa SO. A tabu search based algorithm for the optimal design of multi-objective multi-product supply chain networks. Expert Syst Appl. 2020; 140. https://doi.org/10.1016/j.eswa.2019.07.025
He L, Xie Z. Optimization of Urban Shelter Locations Using Bi-Level Multi-Objective Location-Allocation Model. Int J Environ Res Public Health. 2022; 19(7). https://doi.org/10.3390/ijerph19074401
Zhang H, Zhang K, Chen Y, Ma L. Multi-objective two-level medical facility location problem and tabu search algorithm. Inf Sci (Ny). 2022; 608: 734-756. https://doi.org/10.1016/j.ins.2022.06.083
Wang C, Wang Z, Tian Y, Zhang X, Xiao J. A Dual-Population Based Evolutionary Algorithm for Multi-Objective Location Problem Under Uncertainty of Facilities. IEEE Trans Intell. Transp. Syst. 2022; 23(7): 7692-7707. https://doi.org/10.1109/TITS.2021.3071786
Chobar AP, Amin Adibi M, Kazemi A. A novel multi-objective model for hub location problem considering dynamic demand and environmental issues. J Ind Eng Manag Stud. 2021; 8(1): 1-31. https://doi.org/10.22116/jiems.2021.239719.1373
Yakıcı E, Karatas M. Solving a multi-objective heterogeneous sensor network location problem with genetic algorithm. Comput Networks. 2021; 192(September 2020): 108041. https://doi.org/10.1016/j.comnet.2021.108041
Olivos C, Caceres H. Multi-Objective Optimization of Ambulance Location in Antofagasta, Chile. Transport. 2022; 37(3): 177-189. https://doi.org/10.3846/transport.2022.17073
Karatas M. A dynamic multi-objective location-allocation model for search and rescue assets. Eur J Oper Res. 2021; 288(2): 620-633. https://doi.org/10.1016/j.ejor.2020.06.003
Doolun IS, Ponnambalam SG, Subramanian N, Kanagaraj G. Data driven hybrid evolutionary analytical approach for multi objective location allocation decisions: Automotive green supply chain empirical evidence. Comput Oper Res. 2018; 98: 265-283. https://doi.org/10.1016/j.cor.2018.01.008
Naji HZ, Ghani NA. Dynamic Redeployment Coverage Location Model with Two Types of Servers. Proc 3ed Int Conf . Adv Econ , Manag Soc Study-EMS. 2015: 42-45. https://doi.org/10.15224/ 978-1-63248-058-3-60
Al-Behadili HNK. Improved firefly algorithm with variable neighborhood search for data clustering. Baghdad Sci J. 2022; 19(2): 409-421. https://doi.org/10.21123/BSJ.2022.19.2.0409
Al-Behadili M, Ouelhadj D, Jones D. Multi-objective Particle Swarm Optimisation for Robust Dynamic Scheduling in a Permutation Flow Shop. In: Al. AMM et, ed. Intelligent Systems Design and Applications, Advances in Intelligent Systems and Computing 557. Vol 2. Springer International Publishing AG 2017; 2017:498-507. https://doi.org/10.1007/978-3-319-53480-0
Iqbal Z, Ilyas R, Chan HY, Ahmed N. Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach. Baghdad Sci J. 2021; 18(4(Suppl.): 1465. https://doi.org/10.21123/bsj.2021.18.4(Suppl.).1465
Jarvis JP. Approximating the Equilibrium Behavior of Multi-Server Loss Systems. Manage Sci. 1985; 31(2): 235-239. https://doi.org/10.1287/mnsc.31.2.235
Larson RC. A hypercube queuing model for facility location and redistricting in urban emergency services. Comput Oper Res. 1974; 1(1): 67-95. https://doi.org/10.1016/0305-0548(74)90076-8
Larson RC. Approximating the Performance of Urban Emergency Service Systems. Oper Res. 1975; 23(5): 845-868. https://doi.org/10.1287/opre.23.5.845
Gendreau M, Potvin JY. Tabu Search BT-Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. In: Burke EK, Kendall G, eds. Springer US; 2005: 165-186. https://doi.org/10.1007/0-387-28356-0_6
Saydam C, Rajagopalan HK, Sharer E, Lawrimore-Belanger K. The dynamic redeployment coverage location model. Heal Syst. 2013; 2(2): 103-119. https://doi.org/10.1057/hs.2012.27
Al Nabusi HH. The Crowd Psychology of the Hajj. University of Sussex; 2015. http://sro.sussex.ac.uk/id/eprint/55257/1/Al_Nabulsi%2C_Hani_Hashim.pdf
Al-Harthi ASM, Al-Harbi M. Accidental injuries during muslim pilgrimage. Saudi Med J. 2001; 22(6): 523-525. https://pubmed.ncbi.nlm.nih.gov/11426245/
Kurdi O. Crowd Modelling and Simulation. The University of Sheffield; 2017. https://etheses.whiterose.ac.uk/18669/
Memish ZA, Zumla A, Alhakeem RF, Assiri A, Turkestani A, Al Harby K, et al. Hajj: Infectious disease surveillance and control. Lancet. 2014; 383(9934): 2073-2082. https://doi.org/10.1016/S0140-6736(14)60381-0
Aldossari M,1 Aljoudi A, Celentano D. Health issues in the Hajj pilgrimage: a literature review. East Mediterr Health J. 2019; 25(10): 744-753. https://applications.emro.who.int/emhj/v25/10/10203397-2019-2510-744-753.pdf
Ahmed QA, Arabi YM, Memish ZA. Health risks at the Hajj. Lancet (London, England). 2006; 367(9515): 1008-1015. https://doi.org/10.1016/S0140-6736(06)68429-8
Almehmadi M, Pescaroli G, Alqahtani J, Oyelade T. Investigating health risk perceptions during the Hajj: Pre-Travel advice and adherence to preventative health measures. Afr J Respir Med. 2021; 16(2). https://discovery.ucl.ac.uk/id/eprint/10140290
Long IJ, Flaherty GT. Traumatic Travels – A Review of Accidental Death and Injury in International Travellers. Int J Travel Med Glob Heal. 2018; 6(2): 48-53. https://doi.org/10.15171/ijtmgh.2018.10