­Coleus amboinicus Lour. Leaf Extract Has No Effects on the Biochemical Markers but Improves the Liver Histopathological Scores of Septic Rat Model

Main Article Content

Mutiara Indah Sari
https://orcid.org/0000-0001-6510-2196
R. Lia Kusumawati
Yunita Sari Pane
Sufitni Sufitni

Abstract

Coleus amboinicus Lour. is a herbal plant with immunoregulatory effects due to the polyphenols it contains. This research aims to determine the effects of Coleus amboinicus Lour. leaf extract on the biochemical markers and the liver histopathological scores of septic rat model. We used 28 Rattus norvegicus rats for the study and divided them into 4 groups consisting of 7 rats each: control (healthy rats without treatment), group 1 (septic rats treated with antibiotics), group 2 (septic rats treated with antibiotics and 250 mg/kg body weight of Coleus amboinicus Lour. leaf extract), and group 3 (septic rats treated with antibiotics and 500 mg/kg body weight of Coleus amboinicus Lour. leaf extract). We measured the serum glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine levels, as well as the liver histopathological scores, to assess the improvement. Results showed a decrease in the serum glucose, AST, ALT, urea, and creatinine levels of the rat groups given Coleus amboinicus Lour. leaf extract compared to the rat group given only antibiotics, though the decrease was not significant (p = 0.393; p = 0.064; p = 0.961; p = 0.288; p = 0.119, respectively). However, there was a significant decrease in the liver histopathological scores of the rat groups given Coleus amboinicus Lour. leaf extract compared to the rat group given only antibiotics (p = 0.003). To conclude, Coleus amboinicus Lour. leaf extract administration has no significant effect on the biochemical markers but improves the liver histopathological scores in septic rat model.

Article Details

How to Cite
1.
­Coleus amboinicus Lour. Leaf Extract Has No Effects on the Biochemical Markers but Improves the Liver Histopathological Scores of Septic Rat Model. Baghdad Sci.J [Internet]. 2024 Dec. 22 [cited 2025 Jan. 22];21(12(Suppl.):3980-7. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9362
Section
article

How to Cite

1.
­Coleus amboinicus Lour. Leaf Extract Has No Effects on the Biochemical Markers but Improves the Liver Histopathological Scores of Septic Rat Model. Baghdad Sci.J [Internet]. 2024 Dec. 22 [cited 2025 Jan. 22];21(12(Suppl.):3980-7. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9362

References

Cárdenas CL, Yébenes JC, Vela E, Clèries M, Sirvent JM, Fuster-Bertolín C, et al. Trends in mortality in septic patients according to the different organ failure during 15 years. Crit Care. 2022 Oct 3; 26(1): 302. https://doi.org/10.1186/s13054-022-04176-w

Fleischmann-Struzek C, Mellhammar L, Rose N, Cassini A, Rudd KE, Schlattmann P, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020 Aug; 46(8): 1552-1562. https://doi.org/10.1007/s00134-020-06151-x

Caraballo C, Jaimes F. Organ Dysfunction in Sepsis: An Ominous Trajectory From Infection To Death. Yale J Biol Med. 2019 Dec 20; 92(4): 629-640.

Abraham MN, Kelly AP, Brandwein AB, Fernandes TD, Leisman DE, Taylor MD, et al. Use of Organ Dysfunction as a Primary Outcome Variable Following Cecal Ligation and Puncture: Recommendations for Future Studies. Shock. 2020 Aug; 54(2): 168-182. https://doi.org/10.1097/SHK.0000000000001485

Poston JT, Koyner JL. Sepsis associated acute kidney injury. Br Med J. 2019 Jan 9; 364: k4891. https://doi.org/10.1136/bmj.k4891

Martínez ML, Plata-Menchaca EP, Ruiz-Rodríguez JC, Ferrer R. An approach to antibiotic treatment in patients with sepsis. J Thorac Dis. 2020 Mar; 12(3): 1007-1021. https://doi.org/10.21037/jtd.2020.01.47

Mehta S, Gill SE. Improving clinical outcomes in sepsis and multiple organ dysfunction through precision medicine. J Thorac Dis. 2019 Jan; 11(1): 21-28. https://doi.org/10.21037/jtd.2018.11.74

Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci. 2021 Oct 14; 22(20): 11078. https://doi.org/10.3390/ijms222011078

Liew KY, Hafiz MF, Chong YJ, Harith HH, Israf DA, Tham CL. A Review of Malaysian Herbal Plants and Their Active Constituents with Potential Therapeutic Applications in Sepsis. J Evid Based Complement Alternat Med. 2020 Oct 28; 2020: 8257817. https://doi.org/10.1155/2020/8257817

Arumugam G, Swamy MK, Sinniah UR. Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules. 2016 Mar 30; 21(4): 369. https://doi.org/10.3390/molecules21040369

Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018 Nov 2; 10(11): 1618. https://doi.org/10.3390/nu10111618

Gurgel AP, da Silva JG, Grangeiro AR, Oliveira DC, Lima CM, da Silva AC, et al. In vivo study of the anti-inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J Ethnopharmacol. 2009 Sep 7; 125(2): 361-3. https://doi.org/10.1016/j.jep.2009.07.006

Chiu YJ, Huang TH, Chiu CS, Lu TC, Chen YW, Peng WH, et al. Analgesic and Antiinflammatory Activities of the Aqueous Extract from Plectranthus amboinicus (Lour.) Spreng. Both In Vitro and In Vivo. J Evid Based Complement Alternat Med. 2012; 2012: 508137. https://doi.org/10.1155/2012/508137

Ditjen POM. Farmakope Indonesia. 6th ed. Jakarta: Departemen Kesehatan RI; 2020.

Depkes RI. Materia Medika Indonesia. 1st Ed. Jakarta: Departemen Kesehatan RI; 1977.

Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd Ed. London: Chapman & Hall; 1998.

Fang H, Gong C, Fu J, Liu X, Bi H, Cheng Y, et al. Evaluation of 2 Rat Models for Sepsis Developed by Improved Cecal Ligation/Puncture or Feces Intraperitoneal-Injection. Med Sci Monit. 2020 Jan 29; 26: e919054. https://doi.org/10.12659/MSM.919054

Shrum B, Anantha RV, Xu SX, Donnelly M, Haeryfar SM, McCormick JK, et al. A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes. 2014 Apr 12; 7: 233. https://doi.org/10.1186/1756-0500-7-233

Brunt EM. Grading and staging the histopathological lesions of chronic hepatitis: The Knodell histology activity index and beyond. Hepatology. 2000; 31: 241-246. https://doi.org/10.1002/hep.510310136

Bar-Or D, Rael LT, Madayag RM, Banton KL, Tanner A, Acuna DL, et al. Stress Hyperglycemia in Critically Ill Patients: Insight Into Possible Molecular Pathways. Front Med (Lausanne). 2019 Mar 27; 6: 54. https://doi.org/10.3389/fmed.2019.00054

Ronen JA, Gavin M, Ruppert MD, Peiris AN. Glycemic Disturbances in Pheochromocytoma and Paraganglioma. Cureus. 2019 Apr 27; 11(4): e4551. https://doi.org/10.7759/cureus.4551

Wang Q, Wei S, Zhou S, Qiu J, Shi C, Liu R, et al. Hyperglycemia aggravates acute liver injury by promoting liver-resident macrophage NLRP3 inflammasome activation via the inhibition of AMPK/mTOR-mediated autophagy induction. Immunol Cell Biol. 2020 Jan; 98(1): 54-66. https://doi.org/10.1111/imcb.12297

Jabbar AA, Abdulrahman KK, Abdulsamad P, Mojarrad S, Mehmetçik G, Sardar AS. Phytochemical profile, Antioxidant, Enzyme inhibitory and acute toxicity activity of Astragalus bruguieri. Baghdad Sci J. 2023 Feb 1; 20(1): 0157. https://doi.org/10.21123/bsj.2022.6769

Kalas MA, Chavez L, Leon M, Taweesedt PT, Surani S. Abnormal liver enzymes: A review for clinicians. World J Hepatol. 2021 Nov 27; 13(11): 1688-1698. https://doi.org/10.4254/wjh.v13.i11.1688

Salman EM, Hasan BF. The effect of obesity and Insulin Resistance on Liver Enzymes in Type2 Diabetes Mellitus. Baghdad Sci J. 2015; 12(3): 536-545. https://doi.org/10.21123/bsj.2015.12.3.536-545

Phipps MM, Barraza LH, LaSota ED, Sobieszczyk ME, Pereira MR, Zheng EX, et al. Acute Liver Injury in COVID-19: Prevalence and Association with Clinical Outcomes in a Large U.S Cohort. Hepatology. 2020 Sep; 72(3): 807-817. https://doi.org/10.1002/hep.31404

Beyer D, Hoff J, Sommerfeld O, Zipprich A, Gaßler N, Press AT. The liver in sepsis: molecular mechanism of liver failure and their potential for clinical translation. Mol Med. 2022 Jul 30; 28(1): 84. https://doi.org/10.1186/s10020-022-00510-8

Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, et al. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother. 2023 Sep; 165: 115183. https://doi.org/10.1016/j.biopha.2023.115183

Stasi A, Franzin R, Caggiano G, Losapio R, Fiorentino M, Alfieri C, et al. New Frontiers in Sepsis-Induced Acute Kidney Injury and Blood Purification Therapies: The Role of Polymethylmethacrylate Membrane Hemofilter. Blood Purif. 2023 Jan 24; 24-37. https://doi.org/10.1159/000528685

Brookes EM, Power DA. Elevated serum urea-to-creatinine ratio is associated with adverse inpatient clinical outcomes in non-end stage chronic kidney disease. Sci Rep. 2022 Dec 2; 12(1): 20827. https://doi.org/10.1038/s41598-022-25254-7

Yang AY, Choi HJ, Kim K, Leem J. Antioxidant, Antiapoptotic, and Anti-Inflammatory Effects of Hesperetin in a Mouse Model of Lipopolysaccharide-Induced Acute Kidney Injury. Molecules. 2023 Mar 18; 28(6): 2759. https://doi.org/10.3390/molecules28062759

Cheng Z, Abrams ST, Toh J, Wang SS, Wang Z, Yu Q, et al. The Critical Roles and Mechanisms of Immune Cell Death in Sepsis. Front Immunol. 2020 Aug 25; 11: 1918. https://doi.org/10.3389/fimmu.2020.01918

Lu X, Yang YM, Lu YQ. Immunosenescence: A Critical Factor Associated With Organ Injury After Sepsis. Front Immunol. 2022 Jul 18; 13: 917293. https://doi.org/10.3389/fimmu.2022.917293