Hopf and Zero-Hopf Bifurcation of the Four-Dimensional Lotka-Volterra Systems

Authors

  • Sirwan A. Mustafa Department of Mathematics, Faculty of Science, Soran University, Erbil, Iraq.
  • Niazy H. Hussen Department of Mathematics, Faculty of Science, Soran University, Erbil, Iraq & Department of Mathematics, College of Education, Salahaddin University, Erbil, Iraq.

DOI:

https://doi.org/10.21123/bsj.2024.9456

Keywords:

Averaging theory, Lotka-Volterra system, Periodic solutions, Quadratic polynomial differential system, Zero-Hopf bifurcation

Abstract

        In this work, the four-dimensional Lotka-Volterra model (4DLV) involving four species in a constant environment is considered. The objective of this investigation is to study the local bifurcations occurring in the system. This system has at most sixteen possible equilibrium points. One of the equilibrium points is considered in order to investigate the periodic solutions that bifurcate from the Hopf and the zero-Hopf equilibrium points, respectively. It has been proven that, five families of sufficient conditions exist on the parameters of the system in which the Jacobian matrix at equilibrium point has a pair of purely imaginary    ,  > 0 and two non-positive eigenvalues. Moreover, eight families of sufficient conditions exist on the parameters in which the Jacobian matrix at the equilibrium point has a pair of purely imaginary eigenvalues  and at least one of the other eigenvalues is zero. Next, this investigation reveals that certain four-dimensional Lotka-Volterra subsystems exhibit one periodic solution bifurcating from the Hopf equilibrium point and three periodic solutions bifurcating from the zero-Hopf equilibrium point respectively. The averaging method in any order for computing periodic solutions consists of providing sufficient conditions for the existence of periodic solutions in polynomial differential systems by studying the equilibrium points of their associated averaged systems. Then, the main tool utilized is the first-order averaging method to compute periodic solutions that bifurcate from the Hopf and zero-Hopf singular points of the four-dimensional Lotka-Volterra system under certain conditions. Finally, the obtained theoretical results are supported and verified by numerical examples.

References

Hofbauer J, Sigmund K. Evolution Games and Population Dynamics. Cambridge University Press; 1998; 323 p. https://doi.org/10.1017/CBO9781139173179.

Kowgier H. On Four-Dimensional Lotka-Volterra Models. Pol J Environ Stud. 2009 Sep; 18(3B): 175-180.

Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag; 1983. XVI, 462 p. https://doi.org/10.1007/978-1-4612-1140-2.

Holmes PJ, Marsden JE. Bifurcations to Divergence and Flutter in Flow-Induced Oscillations: An Infinite Dimensional Analysis. Automatica. 1978. 14: 367-384. https://doi.org/10.1016/0005-1098(78)90036-5

Kunzostov YA. Elements of Applied Bifurcation Theory. 2nd Edition. New York: Springer-Verlag; 2000. 614 p.

Dercole F, Maggi S. Detection and continuation of a border collision bifurcation in a forest fire model. Appl Math Comput. 2005; 168(1): 623–635. https://doi.org/10.1016/j.amc.2004.09.008

Naji RK. On The Dynamical Behavior of a Prey-Predator Model with The Effect of Periodic Forcing. Baghdad Sci J. 2007 Jan; 4(1): 147-157.

Majeed SN, Naji RK. An Analysis of a Partial Temporary Immunity SIR Epidemic Model with Nonlinear Treatment Rate. Baghdad Sci J. 2019 Sep; 16(3): 639-647. http://dx.doi.org/10.21123/bsj.2019.16.3.0639.

Llibre J, Xiao D. Limit cycles bifurcating from a-non-isolated zero-Hopf equilibrium of 3-dimensional

differential systems. Proc Am Math Soc. 2014; 142(6): 2047–2062. 10.1090/S0002-9939-2014-11923-X.

Han M, Llibre J, Tian Y. On the Zero-Hopf Bifurcation of the Lotka-Volterra Systems in R3. Mathematics. 2020 Jun; 8(7): 1-14. https://doi.org/10.3390/math8071137.

Zhou L, Zhao Z, Chen F. Stability and Hopf bifurcation analysis of a new four-dimensional hyper-chaotic system. Mod Phys Lett B. 2020 Jul; 34(29): 2050327. https://doi.org/10.1142/S0217984920503273

Farhan AG, Balasim AT, Al-Nassir S. On the Stability of Four Dimensional Lotka-Volterra Prey-Predator System. Iraqi J Sci. 2023 Aug; 64(8): 5009-5030. https://doi.org/10.24996/ijs.2023.64.8.33

Wang R, Xiao D. Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka-Volterra system. Nonlinear Dyn. 2010 Feb; 59(3): 411-422. https://doi.org/10.1007/s11071-009-9547-3.

Menaceur A, Boulaaras S. A number of limit cycle of sextic polynomial differential systems via the averaging theory. Bol Soc Parana Mat. 2021; 39(4): 181-197. https://doi.org/10.5269/bspm.41922.

Diz-Pita E, Llibre J, Otero-Espinar MV, Valls C. The zero-Hopf bifurcations in the Kolmogorov systems of degree in R3. Commun Nonlinear Sci Numer Simul. 2021 Apr; 95: 105621. https://doi.org/10.1016/j.cnsns.2020.105621.

Djedid D, Bendib EO, Makhlouf A. Four-dimensional Zero-Hopf Bifurcation of Quadratic Polynomial Differential System, via Averaging Theory of Third Order. J Dyn Control Syst. 2021 Jun; 28: 901-916. https://doi.org/10.1007/s10883-020-09528-9.

Feddaoui A, Llibre J, Makhlouf A. 4-dimensional zero-Hopf bifurcation for polynomial differentials systems with cubic homogeneous nonlinearities via averaging theory. Int J Dyn Syst Differ Equ. 2020 Aug; 10(4): 321-328. https://doi.org/10.1504/IJDSDE.2020.109106.

Llibre J, Tian Y. The zero-Hopf bifurcations of a four-dimensional hyperchaotic system. J Math Phys. 2021 May; 62(5): 052703. https://doi.org/10.1063/5.0023155.

Sheng L, Wang S, Li X, Han M. Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method. J Math Anal Appl. 2020 Oct; 490(2): 124311. https://doi.org/10.1016/j.jmaa.2020.124311.

Verhulst F. Nonlinear differential equations and dynamical. 2nd edition. Springer Berlin, Heidelberg; 1996. X, 306 p. https://doi.org/10.1007/978-3-642-61453-8.

Downloads

Issue

Section

article

How to Cite

1.
Hopf and Zero-Hopf Bifurcation of the Four-Dimensional Lotka-Volterra Systems. Baghdad Sci.J [Internet]. [cited 2024 Sep. 27];22(3). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9456