Spectrophotometric determination of 4-ethylphenol using cloud point extraction in different water samples

Main Article Content

Alaa Mousa Imran
Saadiyah Ahmed Dhahir
Ahmed jassim muklive

Abstract

This study describes the development of an easy, inexpensive, accurate and fast spectrophotometric technique for the determination of 4-ethylphenol. The primary method involves converting 3-nitroaniline to the diazonium salt and then reacting with 4-ethylphenol in an alkaline medium. It is yellow in color and has a maximum absorption at 426 nm. It obeys Beer's law in a linear range of 5-12 µg mL-1 with a correlation coefficient of 0.9994 and a molar absorptivity 6.0024 x 103 L. mol-1. cm-1. Cloud point extraction was used to quantify trace amounts of phenol using TritonX-114 as a surfactants, and subsequently, a measurement procedure was performed using a UV spectrophotometer. The value of the correlation coefficient was 0.9998, the molar absorbance was 1.04676 × 104 L. mol-1. cm-1and the linear range was 2-11 μg mL-1. The limits of detection and quantification were determined to be 0.42103 and 0.140345 μg mL-1, respectively. The proposed method was successfully used for the determination of phenol in different environmental samples.

Article Details

How to Cite
1.
Spectrophotometric determination of 4-ethylphenol using cloud point extraction in different water samples. Baghdad Sci.J [Internet]. 2024 Dec. 1 [cited 2025 Jan. 22];21(12):3697-708. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9639
Section
article

How to Cite

1.
Spectrophotometric determination of 4-ethylphenol using cloud point extraction in different water samples. Baghdad Sci.J [Internet]. 2024 Dec. 1 [cited 2025 Jan. 22];21(12):3697-708. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9639

References

Said KAM, Ismail AF, Karim ZA, Abdullah MS, Hafeez A. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Saf Environ Prot. 2021; 151: 257-89. https://doi.org/10.1016/j.psep.2021.05.015.

Eryılmaz C, Genç A. Review of treatment technologies for the removal of phenol from wastewaters. J. Water Chem Technol. 2021; 43(2): 145-54. https://doi.org/10.3103/S1063455X21020065

Anku WW, Mamo MA, Govender PP. Phenolic compounds-natural sources, importance and applications. 2017; 419-43. https://dx.doi.org/10.5772/66927

Motamedi M, Yerushalmi L, Haghighat F, Chen Z. Recent developments in photocatalysis of industrial effluents։ A review and example of phenolic compounds degradation. Chemosphere. 2022; 296: 133688. https://doi.org/10.1016/j.chemosphere.2022.133688

El-Naggar NA, Moawad MN, Ahmed EF. Toxic phenolic compounds in the Egyptian coastal waters of Alexandria: spatial distribution, source identification, and ecological risk assessment. water sci. 2022; 36(1): 32-40. https://doi.org/10.1080/23570008.2022.2031724.

Zamri MSFA, Sapawe N. Performance studies of electrobiosynthesis of titanium dioxide nanoparticles (TiO2) for phenol degradation. Mater Today Proc. 2018; 5(10): 21797-801. https://doi.org/10.1016/j.matpr.2018.07.034

Prebihalo S, Brockman A, Cochran J, Dorman FL. Determination of emerging contaminants in wastewater utilizing comprehensive two-dimensional gas-chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A. 2015; 1419: 109-15. https://doi.org/10.1016/j.chroma.2015.09.080

Kamel RM, Shahat A, Anwar ZM, El-Kady HA, Kilany EM. Efficient dual sensor of alternate nanomaterials for sensitive and rapid monitoring of ultra-trace phenols in sea water. J Mol Liq. 2020; 297: 111798. https://doi.org/10.1016/j.molliq.2019.111798

Tsuruta Y, Kitai S, Watanabe S, Inoue H. 2-Methoxy-4-(2-phthalimidinyl) phenylsulfonyl chloride as a fluorescent labeling reagent for determination of phenols in high-performance liquid chromatography and application for determination of urinary phenol and p-cresol. Anal Biochem. 2000; 280(1): 36-41. https://doi.org/10.1006/abio.2000.4492

Lehtonen M. Gas-liquid chromatographic determination of volatile phenols in matured distilled alcoholic beverages. J AOAC Int .1983; 66(1): 62-70. https://doi.org/10.1093/jaoac/66.1.62

Beitollahi H, Tajik S, Biparva P. Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples Measur.2014; 56: 170-7. https://doi.org/10.1016/j.measurement.2014.06.011

Kadhim EA, Dhahir SA, Sando MS. New Diaz Coupling Reaction, Cloud Point Extraction Spectrophotometric Determination of Sulphadimidine Soudium in Pure form and Pharmacetical Preparation with Salicylic Acid as the Coupling Reaction. Indian J Forensic Med Toxicol. 2020; 14(2): 868-74. https://doi.org/10.37506/ijfmt.v14i2.2989

Hassan SS, Shaheed IM, Mohammed NJ, Dhahir SA. A New Visible Spectrophotometric Approach for Mutual Determination of Allopurinol drug in Pharmaceuticals after Cloud Point Extraction. IOP Conf. Ser : Earth Environ Sci 2021; 722(1): 012033. https://doi.org/10.1088/1755-1315/722/1/012033

Abed SS. Spectrophotometric and reverse flow injection method determination of nitrazepam in pharmaceuticals using O-coumaric acid as a new chromogenic reagent. Baghdad Sci J. 2020; 17(1 (Suppl.)): 0265 https://doi.org/10.21123/bsj.2020.17.1(Suppl.).0265

ALmashhadani IMJ, Abed SS. Kinetic-spectrophotometric Method for the Determination of Naringenin in Pure and Supplements Formulations. Baghdad Sci J. 2019; 16(3): 595-602. https://doi.org/10.21123/bsj.2019.16.3.0595 .

jassam Alaallah N, Dhahir SA, Ali HH. Determination of Sulfacetamide Sodium in Pure and Their Pharmaceutical Formulations by Using Cloud Point Extraction Method. Baghdad Sci J. 2021; 18(3): 0575-582. https://doi.org/10.21123/bsj.2021.18.3.0575

Mo F, Qiu D, Zhang L, Wang J. Recent development of aryl diazonium chemistry for the derivatization of aromatic compounds. Chem Rev. 2021; 121(10): 5741-829. https://doi.org/10.1021/acs.chemrev.0c01030

López-Mayan J, Barciela-Alonso MC, Domínguez-González MR, Pena-Vazquez E, Bermejo-Barrera P. Cloud point extraction and ICP-MS for titanium speciation in water samples.

Microchem J. 2020; 152: 104264. https://doi.org/10.1016/j.microc.2019.104264

Al-Yousefi DA, Ali IR. Spectrophotometric determination of transition elements by cloud point extraction with use laboratory by thiazol azo reagent and applied in environmental samples. AIP Conf Proc. 2022; 2386(1) https://doi.org/10.1063/5.0067206

Dhahir SA. Determination of mercury and manganese by using new reagent azo after cloud point extraction for some environmental sample in Iraq. Am J Environ Sci. 2015; 11(5): 392-401. https://doi.org/10.3844/ajessp.2015.392.401

Ali MS, Ali IR . Preparation and characterization of new reagent derivative of thiazol azo for spectral evaluation of some metal elements in different samples using cloud point technique. AIP Conf Proc.2022; 2386(1) https://doi.org/10.1063/5.0067208

Azooz EA, Shabaa GJ, Al-Muhanna EHB, Al-Mulla EAJ, Mortada WI. Displacement cloud point extraction procedure for preconcentration of iron (III) in water and fruit samples prior to spectrophotometric determination. Bull Chem Soc Ethiop. 2023; 37(1): 1-10. https://dx.doi.org/10.4314/bcse.v37i1.1

Dhahir SA, Bakir SR. Cloud point extraction spectrophotometric determination of copper, chromium and cobalt by salen as reagent in wastewater of Iraq. Asian J Chem. 2014; 26(16): 5305. https://doi.org/10.14233/ajchem.2014.17754

Mortada WI. Recent developments and applications of cloud point extraction: A critical review. Microchem J. 2020; 157: 105055. https://doi.org/10.1016/j.microc.2020.105055

Arya S, Kaimal AM, Chib M, Sonawane SK, Show PL. Novel, energy efficient and green cloud point extraction: technology and applications in food processing. J Food Sci Technol. 2019; 56: 524-34. https://doi.org/10.1007/s13197-018-3546-7

Kojro G, Wroczyński P. Cloud point extraction in the determination of drugs in biological matrices. J Chromatogr Sci. 2020; 58(2): 151-62. https://doi.org/10.1093/chromsci/bmz064

Schotten C, Leprevost SK, Yong LM, Hughes CE, Harris KD, Browne DL. Comparison of the thermal stabilities of diazonium salts and their corresponding triazenes. Org Process Res Dev. 2020; 24(10): 2336-41. https://doi.org/10.1021/acs.oprd.0c00162

Yamamoto Y, Kumamaru T, Hayashi Y. New method for the determination of pentachlorophenol by atomic absorption spectrophotometry. Talanta. 1967; 14(5): 611-2. https://doi.org/10.1016/0039-9140(67)80249-2

Abd Wannas F, Azooz EA, Ridha RK, Jawad SK. Separation and micro determination of zinc (II) and cadmium (II) in food samples using cloud point extraction method. Iraqi J Sci. 2023; 64(3): 1049-1061. https://doi.org/10.24996/ijs.2023.64.3.2

Kirkbright G, Smith A, West T. An indirect sequential determination of phosphorus and silicon by atomic-absorption spectrophotometry. Analyst. 1967; 92(1096): 411-6. https://doi.org/10.1039/AN9679200411