التقدير الطيفي لمركب 4-إيثيل فينول باستخدام استخلاص نقطة الغيمة في عينات مياه مختلفة

المؤلفون

  • الاء موسى عمران قسم الكيمياء، العلوم التطبيقية، الجامعة التكنولوجية، بغداد، العراق
  • سعدية احمد ظاهر قسم الكيمياء، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.
  • احمد جاسم مخلف قسم الكيمياء، العلوم التطبيقية، الجامعة التكنولوجية، بغداد، العراق

DOI:

https://doi.org/10.21123/bsj.2024.9639

الكلمات المفتاحية:

الاستخلاص بنقطة الغيمة ، تقدير ، عينات المياه البيئية ،4-إيثيل فينول، قياس الطيف الضوئي.

الملخص

تصف هذه الدراسة تطوير تقنية سهلة ورخيصة ودقيقة وسريعة لقياس 4-اثيل فينول وتنطوي الطريقة الأولية على تحويل -3 نيترو انيلين إلى ملح ديازونيوم ثم التفاعل مع 4 - إثيل فينول في وسط قلوي.المعقد المتكون هو أصفر اللون وله امتصاص عند اعلى طول موجي عند 426 nm. ويتبع قانون بير في مدى خطي قدره 5-12 μg mL-1 مع معامل ارتباط قدره 0.994 وامتصاص مولاري 6.0024x10^L.mol-1.cm-1  وتم استُخدِام تقنية نقطة السحابة لقياس كميات قليلة جدا من الفينول باستخدام  TritonX-114 كمفاعلات خافضة للتوتر السطحي، ومن ثم تم القياس باستخدام مقياس طيفي للأشعة فوق البنفسجية. وكانت قيمة معامل الارتباط 0.998، وكان الاامتصاص المولاري هو 1.0476 × 104 L.mol-1.cm-1، وكان المدى الخطي 2-11 μg mL-1 . وحُددت حدود الكشف والتحديد الكمي بأنها 0.42103 و0.140345 μg mL-1، على التوالي. وقد استخدمت الطريقة المقترحة بنجاح لتحديد الفينول في العينات البيئية المختلفة.

المراجع

Said KAM, Ismail AF, Karim ZA, Abdullah MS, Hafeez A. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Saf Environ Prot. 2021; 151: 257-89. https://doi.org/10.1016/j.psep.2021.05.015.

Eryılmaz C, Genç A. Review of treatment technologies for the removal of phenol from wastewaters. J. Water Chem Technol. 2021; 43(2): 145-54. https://doi.org/10.3103/S1063455X21020065

Anku WW, Mamo MA, Govender PP. Phenolic compounds-natural sources, importance and applications. 2017; 419-43. https://dx.doi.org/10.5772/66927

Motamedi M, Yerushalmi L, Haghighat F, Chen Z. Recent developments in photocatalysis of industrial effluents։ A review and example of phenolic compounds degradation. Chemosphere. 2022; 296: 133688. https://doi.org/10.1016/j.chemosphere.2022.133688

El-Naggar NA, Moawad MN, Ahmed EF. Toxic phenolic compounds in the Egyptian coastal waters of Alexandria: spatial distribution, source identification, and ecological risk assessment. water sci. 2022; 36(1): 32-40. https://doi.org/10.1080/23570008.2022.2031724.

Zamri MSFA, Sapawe N. Performance studies of electrobiosynthesis of titanium dioxide nanoparticles (TiO2) for phenol degradation. Mater Today Proc. 2018; 5(10): 21797-801. https://doi.org/10.1016/j.matpr.2018.07.034

Prebihalo S, Brockman A, Cochran J, Dorman FL. Determination of emerging contaminants in wastewater utilizing comprehensive two-dimensional gas-chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A. 2015; 1419: 109-15. https://doi.org/10.1016/j.chroma.2015.09.080

Kamel RM, Shahat A, Anwar ZM, El-Kady HA, Kilany EM. Efficient dual sensor of alternate nanomaterials for sensitive and rapid monitoring of ultra-trace phenols in sea water. J Mol Liq. 2020; 297: 111798. https://doi.org/10.1016/j.molliq.2019.111798

Tsuruta Y, Kitai S, Watanabe S, Inoue H. 2-Methoxy-4-(2-phthalimidinyl) phenylsulfonyl chloride as a fluorescent labeling reagent for determination of phenols in high-performance liquid chromatography and application for determination of urinary phenol and p-cresol. Anal Biochem. 2000; 280(1): 36-41. https://doi.org/10.1006/abio.2000.4492

Lehtonen M. Gas-liquid chromatographic determination of volatile phenols in matured distilled alcoholic beverages. J AOAC Int .1983; 66(1): 62-70. https://doi.org/10.1093/jaoac/66.1.62

Beitollahi H, Tajik S, Biparva P. Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples Measur.2014; 56: 170-7. https://doi.org/10.1016/j.measurement.2014.06.011

Kadhim EA, Dhahir SA, Sando MS. New Diaz Coupling Reaction, Cloud Point Extraction Spectrophotometric Determination of Sulphadimidine Soudium in Pure form and Pharmacetical Preparation with Salicylic Acid as the Coupling Reaction. Indian J Forensic Med Toxicol. 2020; 14(2): 868-74. https://doi.org/10.37506/ijfmt.v14i2.2989

Hassan SS, Shaheed IM, Mohammed NJ, Dhahir SA. A New Visible Spectrophotometric Approach for Mutual Determination of Allopurinol drug in Pharmaceuticals after Cloud Point Extraction. IOP Conf. Ser : Earth Environ Sci 2021; 722(1): 012033. https://doi.org/10.1088/1755-1315/722/1/012033

Abed SS. Spectrophotometric and reverse flow injection method determination of nitrazepam in pharmaceuticals using O-coumaric acid as a new chromogenic reagent. Baghdad Sci J. 2020; 17(1 (Suppl.)): 0265 https://doi.org/10.21123/bsj.2020.17.1(Suppl.).0265

ALmashhadani IMJ, Abed SS. Kinetic-spectrophotometric Method for the Determination of Naringenin in Pure and Supplements Formulations. Baghdad Sci J. 2019; 16(3): 595-602. https://doi.org/10.21123/bsj.2019.16.3.0595 .

jassam Alaallah N, Dhahir SA, Ali HH. Determination of Sulfacetamide Sodium in Pure and Their Pharmaceutical Formulations by Using Cloud Point Extraction Method. Baghdad Sci J. 2021; 18(3): 0575-582. https://doi.org/10.21123/bsj.2021.18.3.0575

Mo F, Qiu D, Zhang L, Wang J. Recent development of aryl diazonium chemistry for the derivatization of aromatic compounds. Chem Rev. 2021; 121(10): 5741-829. https://doi.org/10.1021/acs.chemrev.0c01030

López-Mayan J, Barciela-Alonso MC, Domínguez-González MR, Pena-Vazquez E, Bermejo-Barrera P. Cloud point extraction and ICP-MS for titanium speciation in water samples.

Microchem J. 2020; 152: 104264. https://doi.org/10.1016/j.microc.2019.104264

Al-Yousefi DA, Ali IR. Spectrophotometric determination of transition elements by cloud point extraction with use laboratory by thiazol azo reagent and applied in environmental samples. AIP Conf Proc. 2022; 2386(1) https://doi.org/10.1063/5.0067206

Dhahir SA. Determination of mercury and manganese by using new reagent azo after cloud point extraction for some environmental sample in Iraq. Am J Environ Sci. 2015; 11(5): 392-401. https://doi.org/10.3844/ajessp.2015.392.401

Ali MS, Ali IR . Preparation and characterization of new reagent derivative of thiazol azo for spectral evaluation of some metal elements in different samples using cloud point technique. AIP Conf Proc.2022; 2386(1) https://doi.org/10.1063/5.0067208

Azooz EA, Shabaa GJ, Al-Muhanna EHB, Al-Mulla EAJ, Mortada WI. Displacement cloud point extraction procedure for preconcentration of iron (III) in water and fruit samples prior to spectrophotometric determination. Bull Chem Soc Ethiop. 2023; 37(1): 1-10. https://dx.doi.org/10.4314/bcse.v37i1.1

Dhahir SA, Bakir SR. Cloud point extraction spectrophotometric determination of copper, chromium and cobalt by salen as reagent in wastewater of Iraq. Asian J Chem. 2014; 26(16): 5305. https://doi.org/10.14233/ajchem.2014.17754

Mortada WI. Recent developments and applications of cloud point extraction: A critical review. Microchem J. 2020; 157: 105055. https://doi.org/10.1016/j.microc.2020.105055

Arya S, Kaimal AM, Chib M, Sonawane SK, Show PL. Novel, energy efficient and green cloud point extraction: technology and applications in food processing. J Food Sci Technol. 2019; 56: 524-34. https://doi.org/10.1007/s13197-018-3546-7

Kojro G, Wroczyński P. Cloud point extraction in the determination of drugs in biological matrices. J Chromatogr Sci. 2020; 58(2): 151-62. https://doi.org/10.1093/chromsci/bmz064

Schotten C, Leprevost SK, Yong LM, Hughes CE, Harris KD, Browne DL. Comparison of the thermal stabilities of diazonium salts and their corresponding triazenes. Org Process Res Dev. 2020; 24(10): 2336-41. https://doi.org/10.1021/acs.oprd.0c00162

Yamamoto Y, Kumamaru T, Hayashi Y. New method for the determination of pentachlorophenol by atomic absorption spectrophotometry. Talanta. 1967; 14(5): 611-2. https://doi.org/10.1016/0039-9140(67)80249-2

Abd Wannas F, Azooz EA, Ridha RK, Jawad SK. Separation and micro determination of zinc (II) and cadmium (II) in food samples using cloud point extraction method. Iraqi J Sci. 2023; 64(3): 1049-1061. https://doi.org/10.24996/ijs.2023.64.3.2

Kirkbright G, Smith A, West T. An indirect sequential determination of phosphorus and silicon by atomic-absorption spectrophotometry. Analyst. 1967; 92(1096): 411-6. https://doi.org/10.1039/AN9679200411

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
التقدير الطيفي لمركب 4-إيثيل فينول باستخدام استخلاص نقطة الغيمة في عينات مياه مختلفة. Baghdad Sci.J [انترنت]. [وثق 3 يوليو، 2024];21(12). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9639