التقدير الطيفي لمركب 4-إيثيل فينول باستخدام استخلاص نقطة الغيمة في عينات مياه مختلفة
DOI:
https://doi.org/10.21123/bsj.2024.9639الكلمات المفتاحية:
الاستخلاص بنقطة الغيمة ، تقدير ، عينات المياه البيئية ،4-إيثيل فينول، قياس الطيف الضوئي.الملخص
تصف هذه الدراسة تطوير تقنية سهلة ورخيصة ودقيقة وسريعة لقياس 4-اثيل فينول وتنطوي الطريقة الأولية على تحويل -3 نيترو انيلين إلى ملح ديازونيوم ثم التفاعل مع 4 - إثيل فينول في وسط قلوي.المعقد المتكون هو أصفر اللون وله امتصاص عند اعلى طول موجي عند 426 nm. ويتبع قانون بير في مدى خطي قدره 5-12 μg mL-1 مع معامل ارتباط قدره 0.994 وامتصاص مولاري 6.0024x10^3 L.mol-1.cm-1 وتم استُخدِام تقنية نقطة السحابة لقياس كميات قليلة جدا من الفينول باستخدام TritonX-114 كمفاعلات خافضة للتوتر السطحي، ومن ثم تم القياس باستخدام مقياس طيفي للأشعة فوق البنفسجية. وكانت قيمة معامل الارتباط 0.998، وكان الاامتصاص المولاري هو 1.0476 × 104 L.mol-1.cm-1، وكان المدى الخطي 2-11 μg mL-1 . وحُددت حدود الكشف والتحديد الكمي بأنها 0.42103 و0.140345 μg mL-1، على التوالي. وقد استخدمت الطريقة المقترحة بنجاح لتحديد الفينول في العينات البيئية المختلفة.
Received 24/09/2023
Revised 22/12/2023
Accepted 24/12/2023
Published Online First 20/05/2024
المراجع
Said KAM, Ismail AF, Karim ZA, Abdullah MS, Hafeez A. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Saf Environ Prot. 2021; 151: 257-89. https://doi.org/10.1016/j.psep.2021.05.015.
Eryılmaz C, Genç A. Review of treatment technologies for the removal of phenol from wastewaters. J. Water Chem Technol. 2021; 43(2): 145-54. https://doi.org/10.3103/S1063455X21020065
Anku WW, Mamo MA, Govender PP. Phenolic compounds-natural sources, importance and applications. 2017; 419-43. https://dx.doi.org/10.5772/66927
Motamedi M, Yerushalmi L, Haghighat F, Chen Z. Recent developments in photocatalysis of industrial effluents։ A review and example of phenolic compounds degradation. Chemosphere. 2022; 296: 133688. https://doi.org/10.1016/j.chemosphere.2022.133688
El-Naggar NA, Moawad MN, Ahmed EF. Toxic phenolic compounds in the Egyptian coastal waters of Alexandria: spatial distribution, source identification, and ecological risk assessment. water sci. 2022; 36(1): 32-40. https://doi.org/10.1080/23570008.2022.2031724.
Zamri MSFA, Sapawe N. Performance studies of electrobiosynthesis of titanium dioxide nanoparticles (TiO2) for phenol degradation. Mater Today Proc. 2018; 5(10): 21797-801. https://doi.org/10.1016/j.matpr.2018.07.034
Prebihalo S, Brockman A, Cochran J, Dorman FL. Determination of emerging contaminants in wastewater utilizing comprehensive two-dimensional gas-chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A. 2015; 1419: 109-15. https://doi.org/10.1016/j.chroma.2015.09.080
Kamel RM, Shahat A, Anwar ZM, El-Kady HA, Kilany EM. Efficient dual sensor of alternate nanomaterials for sensitive and rapid monitoring of ultra-trace phenols in sea water. J Mol Liq. 2020; 297: 111798. https://doi.org/10.1016/j.molliq.2019.111798
Tsuruta Y, Kitai S, Watanabe S, Inoue H. 2-Methoxy-4-(2-phthalimidinyl) phenylsulfonyl chloride as a fluorescent labeling reagent for determination of phenols in high-performance liquid chromatography and application for determination of urinary phenol and p-cresol. Anal Biochem. 2000; 280(1): 36-41. https://doi.org/10.1006/abio.2000.4492
Lehtonen M. Gas-liquid chromatographic determination of volatile phenols in matured distilled alcoholic beverages. J AOAC Int .1983; 66(1): 62-70. https://doi.org/10.1093/jaoac/66.1.62
Beitollahi H, Tajik S, Biparva P. Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples Measur.2014; 56: 170-7. https://doi.org/10.1016/j.measurement.2014.06.011
Kadhim EA, Dhahir SA, Sando MS. New Diaz Coupling Reaction, Cloud Point Extraction Spectrophotometric Determination of Sulphadimidine Soudium in Pure form and Pharmacetical Preparation with Salicylic Acid as the Coupling Reaction. Indian J Forensic Med Toxicol. 2020; 14(2): 868-74. https://doi.org/10.37506/ijfmt.v14i2.2989
Hassan SS, Shaheed IM, Mohammed NJ, Dhahir SA. A New Visible Spectrophotometric Approach for Mutual Determination of Allopurinol drug in Pharmaceuticals after Cloud Point Extraction. IOP Conf. Ser : Earth Environ Sci 2021; 722(1): 012033. https://doi.org/10.1088/1755-1315/722/1/012033
Abed SS. Spectrophotometric and reverse flow injection method determination of nitrazepam in pharmaceuticals using O-coumaric acid as a new chromogenic reagent. Baghdad Sci J. 2020; 17(1 (Suppl.)): 0265 https://doi.org/10.21123/bsj.2020.17.1(Suppl.).0265
ALmashhadani IMJ, Abed SS. Kinetic-spectrophotometric Method for the Determination of Naringenin in Pure and Supplements Formulations. Baghdad Sci J. 2019; 16(3): 595-602. https://doi.org/10.21123/bsj.2019.16.3.0595 .
jassam Alaallah N, Dhahir SA, Ali HH. Determination of Sulfacetamide Sodium in Pure and Their Pharmaceutical Formulations by Using Cloud Point Extraction Method. Baghdad Sci J. 2021; 18(3): 0575-582. https://doi.org/10.21123/bsj.2021.18.3.0575
Mo F, Qiu D, Zhang L, Wang J. Recent development of aryl diazonium chemistry for the derivatization of aromatic compounds. Chem Rev. 2021; 121(10): 5741-829. https://doi.org/10.1021/acs.chemrev.0c01030
López-Mayan J, Barciela-Alonso MC, Domínguez-González MR, Pena-Vazquez E, Bermejo-Barrera P. Cloud point extraction and ICP-MS for titanium speciation in water samples.
Microchem J. 2020; 152: 104264. https://doi.org/10.1016/j.microc.2019.104264
Al-Yousefi DA, Ali IR. Spectrophotometric determination of transition elements by cloud point extraction with use laboratory by thiazol azo reagent and applied in environmental samples. AIP Conf Proc. 2022; 2386(1) https://doi.org/10.1063/5.0067206
Dhahir SA. Determination of mercury and manganese by using new reagent azo after cloud point extraction for some environmental sample in Iraq. Am J Environ Sci. 2015; 11(5): 392-401. https://doi.org/10.3844/ajessp.2015.392.401
Ali MS, Ali IR . Preparation and characterization of new reagent derivative of thiazol azo for spectral evaluation of some metal elements in different samples using cloud point technique. AIP Conf Proc.2022; 2386(1) https://doi.org/10.1063/5.0067208
Azooz EA, Shabaa GJ, Al-Muhanna EHB, Al-Mulla EAJ, Mortada WI. Displacement cloud point extraction procedure for preconcentration of iron (III) in water and fruit samples prior to spectrophotometric determination. Bull Chem Soc Ethiop. 2023; 37(1): 1-10. https://dx.doi.org/10.4314/bcse.v37i1.1
Dhahir SA, Bakir SR. Cloud point extraction spectrophotometric determination of copper, chromium and cobalt by salen as reagent in wastewater of Iraq. Asian J Chem. 2014; 26(16): 5305. https://doi.org/10.14233/ajchem.2014.17754
Mortada WI. Recent developments and applications of cloud point extraction: A critical review. Microchem J. 2020; 157: 105055. https://doi.org/10.1016/j.microc.2020.105055
Arya S, Kaimal AM, Chib M, Sonawane SK, Show PL. Novel, energy efficient and green cloud point extraction: technology and applications in food processing. J Food Sci Technol. 2019; 56: 524-34. https://doi.org/10.1007/s13197-018-3546-7
Kojro G, Wroczyński P. Cloud point extraction in the determination of drugs in biological matrices. J Chromatogr Sci. 2020; 58(2): 151-62. https://doi.org/10.1093/chromsci/bmz064
Schotten C, Leprevost SK, Yong LM, Hughes CE, Harris KD, Browne DL. Comparison of the thermal stabilities of diazonium salts and their corresponding triazenes. Org Process Res Dev. 2020; 24(10): 2336-41. https://doi.org/10.1021/acs.oprd.0c00162
Yamamoto Y, Kumamaru T, Hayashi Y. New method for the determination of pentachlorophenol by atomic absorption spectrophotometry. Talanta. 1967; 14(5): 611-2. https://doi.org/10.1016/0039-9140(67)80249-2
Abd Wannas F, Azooz EA, Ridha RK, Jawad SK. Separation and micro determination of zinc (II) and cadmium (II) in food samples using cloud point extraction method. Iraqi J Sci. 2023; 64(3): 1049-1061. https://doi.org/10.24996/ijs.2023.64.3.2
Kirkbright G, Smith A, West T. An indirect sequential determination of phosphorus and silicon by atomic-absorption spectrophotometry. Analyst. 1967; 92(1096): 411-6. https://doi.org/10.1039/AN9679200411
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Alaa Mousa Imran, Saadiyah Ahmed Dhahir, Ahmed jassim muklive
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.