التشخيص المبكر لمرض الزهايمر عن طريق استخراج مميزات الصور بالرسم البياني واكتشاف حافة كاني باستخدام الشبكة العصبية التلافيفية

محتوى المقالة الرئيسي

Karrar A. Kadhim
https://orcid.org/0000-0002-0636-2657
Farhan Mohamed
Fallah H Najjar
https://orcid.org/0000-0002-5414-9260
Ghalib Ahmed Salman

الملخص

يؤثر مرض الزهايمر (AD) بشكل متزايد على كبار السن ويعتبر أحد الامراض الرئيسية التي تؤدي الى الموت لأولئك الذين يبلغون من العمر 65 عامًا وأكثر. يتم استخدام طرق مختلفة للتعلم العميق للتشخيص التلقائي لهذا المرض، إلا أنها احيانا قد تحتوي على بعض القيود. يعد التعلم العميق من الطرق الحديثة التي تم استخدامها لكشف وتصنيف الصورة الطبية بسبب قدرته على استخراج ميزات الصور بشكل تلقائي. ومع ذلك، لا تزال هناك بعض القيود على استخدام التعلم العميق لتصنيف الصور الطبية بدقة عالية لأنه في بعض الأحيان لا يمكن استخراج الحواف الدقيقة، وقد يكون هناك بعض التشويه في الصور. يهدف هذا البحث إلى تطوير نظام تشخيص الدماغ بمساعدة الحاسوب (CABD) الذي يمكنه معرفة ما إذا كان فحص الدماغ يظهر مؤشرات على مرض الزهايمر ام لا. يستخدم النظام المقترح التصوير بالرنين المغناطيسي وطرق استخراج الميزات لتصنيف الصور الطبية. تستهدف هذه الورقة مجموعة بيانات مبادرة التصوير العصبي لمرض الزهايمر (ADNI) التي تتضمن التصوير بالرنين المغناطيسي الوظيفي والتصوير المقطعي بالإصدار البوزيتروني لتحديد مريض الزهايمر، والتي تم إنتاجها للأشخاص المصابين بمرض الزهايمر بالإضافة إلى الاشخاص غير المصابين. تستخدم التقنية المقترحة فحوصات الدماغ بالرنين المغناطيسي لاكتشاف وتصنيف السمات باستخدام تقنية استخراج ميزات الرسم البياني (HFE) ليتم دمجها مع اكتشاف حواف Canny الذي يمثل الصورة المدخلة ليتم ادخالها في الشبكة العصبية التلافيفية لغرض تصنيفها. تقوم هذه الإستراتيجية بتتبع حالات الاتجاه المتدرج في الصورة. حيث قدمت هذه التقنية المقترحة نتيجة تجريبية بلغت دقتها 97.7% لتصنيف صور الرنين المغناطيسي لمرض الزهايمر.

تفاصيل المقالة

كيفية الاقتباس
1.
التشخيص المبكر لمرض الزهايمر عن طريق استخراج مميزات الصور بالرسم البياني واكتشاف حافة كاني باستخدام الشبكة العصبية التلافيفية. Baghdad Sci.J [انترنت]. 25 فبراير، 2024 [وثق 20 مايو، 2024];21(2(SI):0643. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9740
القسم
article

كيفية الاقتباس

1.
التشخيص المبكر لمرض الزهايمر عن طريق استخراج مميزات الصور بالرسم البياني واكتشاف حافة كاني باستخدام الشبكة العصبية التلافيفية. Baghdad Sci.J [انترنت]. 25 فبراير، 2024 [وثق 20 مايو، 2024];21(2(SI):0643. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9740

المراجع

Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB, Initiative AsDN. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog. Neurobiol. PROG NEUROBIOL. 2014;117:20-40. https://doi.org/10.1016/j.pneurobio.2014.02.004.

Therriault J, Zimmer ER, Benedet AL, Pascoal TA, Gauthier S, Rosa-Neto P. Staging of Alzheimer’s disease: past, present, and future perspectives. Trends. Mol. Med. . 2022. https://doi.org/10.1016/j.molmed.2022.05.008.

Janghel R, Rathore Y. Deep convolution neural network based system for early diagnosis of Alzheimer's disease. Irbm. 2021;42(4):258-67. https://doi.org/10.1016/j.irbm.2020.06.006.

Sathiyamoorthi V, Ilavarasi A, Murugeswari K, Ahmed ST, Devi BA, Kalipindi M. A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer's disease in MRI images. Measurement. 2021;171:108838. https://doi.org/10.1016/j.measurement.2020.108838.

Al-Khuzaie FE, Bayat O, Duru AD. Diagnosis of Alzheimer disease using 2D MRI slices by convolutional neural network. Appl Bionics Biomech .2021. https://doi.org/10.1155/2023/9762945.

Ai R, Jin X, Tang B, Yang G, Niu Z, Fang EF. Ageing and Alzheimer’s Disease: Application of Artificial Intelligence in Mechanistic Studies, Diagnosis, and Drug Development. Artif Intell Med. .2021; p. 1-16. https://doi.org/10.1007/978-3-030-58080-3_74-1.

Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev. .2017;74:58-75. https://doi.org/10.1016/j.neubiorev.2017.01.002.

Khodatars M, Shoeibi A, Sadeghi D, Ghaasemi N, Jafari M, Moridian P, et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Comput. Biol. Med. . 2021;139:104949. https://doi.org/10.1016/j.compbiomed.2021.104949.

Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. EM. 2021;31(3):685-95. https://doi.org/10.1007/s12525-021-00475-2.

Association As. Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2018;14(3):367-429. https://doi.org/10.1016/j.jalz.2018.02.001.

Richhariya B, Tanveer M, Rashid A, Initiative AsDN. Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed. Signal Process. Control. . 2020;59:101903. https://doi.org/10.1016/j.bspc.2020.101903.

Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. . 2018;29(6):2063-79. https://doi.org/10.1109/TNNLS.2018.2790388.

Schwarz CG, Gunter JL, Wiste HJ, Przybelski SA, Weigand SD, Ward CP, et al. A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity. NeuroImage: Clin. . 2016;11:802-12. https://doi.org/10.1016/j.nicl.2016.05.017.

Porsteinsson A, Isaacson R, Knox S, Sabbagh M, Rubino I. Diagnosis of early alzheimer’s disease: Clinical practice in 2021. The JPAD. 2021;8(3):371-86. https://doi.org/10.14283/jpad.2021.23.

Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol. Psychiatry. 2020;88(11):818-28. https://doi.org/10.1016/j.biopsych.2020.02.016.

Afrasiabi M, Mohammadi M, Rastegar M, Afrasiabi S. Advanced deep learning approach for probabilistic wind speed forecasting. IEEE Transactions on Industrial Informatics. 2020;17(1):720-7. https://doi.org/10.1109/TII.2020.3004436.

Yamanakkanavar N, Choi JY, Lee B. MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors. 2020;20(11):3243. https://doi.org/10.3390/s20113243.

Hong X, Lin R, Yang C, Zeng N, Cai C, Gou J, et al. Predicting Alzheimer’s disease using LSTM. Ieee Access. 2019;7:80893-901. https://doi.org/10.1109/ACCESS.2019.2919385.

Taheri Gorji H, Kaabouch N. A deep learning approach for diagnosis of mild cognitive impairment based on MRI images. Brain Sci. . 2019;9(9):217. https://doi.org/10.3390/brainsci9090217.

Sarraf S, Tofighi G. Classification of alzheimer's disease using fmri data and deep learning convolutional neural networks. arXiv preprint arXiv:160308631. 2016.

https://doi.org/10.48550/arXiv.1603.08631.

Kalavathi P, Christy A, Priya T. Detection of Alzheimer disease in MR brain images using FFCM method. Computational methods, communication techniques and informatics. 2017:140-4.

AlSaeed D, Omar SF. Brain MRI Analysis for Alzheimer’s Disease Diagnosis Using CNN-Based Feature Extraction and Machine Learning. Sensors. 2022;22(8):2911. https://doi.org/10.3390/s22082911.

Jack Jr CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging. 2008;27(4):685-91. https://doi.org/10.1002/jmri.21049.

Noella R, Priyadarshini J. Diagnosis of Alzheimer’s, Parkinson’s disease and frontotemporal dementia using a generative adversarial deep convolutional neural network. Neural. Comput. Appl. NEURAL COMPUT. 2022:1-10. https://doi.org/10.1007/s00521-022-07750-z.

Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, et al. The Alzheimer's disease neuroimaging initiative. Neuroimaging Clin. N. Am. . 2005;15(4):869-77. https://doi.org/10.1016/j.nic.2005.09.008.

Abdou MA. Literature review: Efficient deep neural networks techniques for medical image analysis. Neural. Comput. Appl. NEURAL COMPUT. 2022:1-22. https://doi.org/10.1007/s00521-022-06960-9.

Hasan AM, Qasim AF, Jalab HA, Ibrahim RW. Breast cancer MRI classification based on fractional entropy image enhancement and deep feature extraction. Baghdad Sci. J. . 2023;20(1):0221. https://dx.doi.org/10.21123/bsj.2022.6782.

Kazemzadeh M, Hisey CL, Zargar-Shoshtari K, Xu W, Broderick NG. Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications. Opt. Commun. . 2022;510:127977. https://doi.org/10.1016/j.optcom.2022.127977.

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer. 2020;20(3):174-86. https://doi.org/10.1038/s41568-019-0238-1.

Lane ND, Bhattacharya S, Mathur A, Georgiev P, Forlivesi C, Kawsar F. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Computing. 2017;16(3):82-8. https://doi.org/10.1109/MPRV.2017.2940968.

Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Transactions on Radiation and Plasma Medical Sciences. 2019;3(2):162-9. https://doi.org/10.1109/TRPMS.2018.2890359.

Van Engelen JE, Hoos HH. A survey on semi-supervised learning. Machine Learning. 2020;109(2):373-440. https://doi.org/10.1007/s10994-019-05855-6.

Kadhim KA, Mohamed F, Khudhair ZN, Alkawaz MH, editors. Classification and predictive diagnosis earlier Alzheimer’s disease using MRI brain images. 2020 IEEE Conference on Big Data and Analytics (ICBDA); 2020: IEEE. https://doi.org/10.1109/ICBDA50157.2020.9289829.

Alasker H, Alharkan S, Alharkan W, Zaki A, Riza LS, editors. Detection of kidney disease using various intelligent classifiers. 2017 3rd international conference on science in information technology (ICSITech); 2017: IEEE. https://doi.org/10.1109/ICSITech.2017.8257199.

Alnedawe SM, Aljobouri HK. A New Model Design for Combating COVID-19 Pandemic Based on SVM and CNN Approaches. Baghdad Sci. J. 2023. https://doi.org/10.21123/bsj.2023.7403.

Padmasini N, Umamaheswari R, Kalpana R, Sikkandar MY. Comparative study of iris and retinal images for early detection of diabetic mellitus. JMIHI. 2020;10(2):316-25. https://doi.org/10.1166/jmihi.2020.2973.

Ramzan F, Khan MUG, Rehmat A, Iqbal S, Saba T, Rehman A, et al. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks. J. Med. Syst. . 2020;44(2):1-16. https://doi.org/10.1007/s10916-019-1475-2.

Thompson RF, Iadanza MG, Hesketh EL, Rawson S, Ranson NA. Collection, pre-processing and on-the-fly analysis of data for high-resolution, single-particle cryo-electron microscopy. Nat. Protoc. 2019;14(1):100-18. https://doi.org/10.1038/s41596-018-0084-8.

Najjar FH, Khudhair KT, Khaleq AHA, Kadhim ON, Abedi F, Al-Kharsan IH, editors. Histogram Features Extraction for Edge Detection Approach. 2022 5th International Conference on Engineering Technology and its Applications (IICETA); 2022: IEEE. https://doi.org/10.1109/IICETA54559.2022.9888697.

Dinu A, Manju R, editors. A Novel Modelling Technique for Early Recognition and Classification of Alzheimer’s disease. 2021 3rd International Conference on Signal Processing and Communication (ICPSC); 2021: IEEE. https://doi.org/10.1109/ICSPC51351.2021.9451803.

Eskandari H, Imani M, Moghaddam MP. Convolutional and recurrent neural network based model for short-term load forecasting. Electr. Power Syst. Res. ELECTR POW. 2021;195:107173. https://doi.org/10.1016/j.epsr.2021.107173.

Andresini G, Appice A, Malerba D. Nearest cluster-based intrusion detection through convolutional neural networks. KBS. 2021;216:106798. https://doi.org/10.1016/j.knosys.2021.106798.

Santra G, Martin JM, editors. Some observations on the performance of the most recent exchange-correlation functionals for the large and chemically diverse GMTKN55 benchmark. AIP Conference Proceedings; 2019: AIP Publishing LLC.2019. https://doi.org/10.1063/1.5137915.

Hedayati R, Khedmati M, Taghipour-Gorjikolaie M. Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis. Biomed. Signal Process. Control. 2021;66:102397. https://doi.org/10.1016/j.bspc.2020.102397.

AbdulAzeem Y, Bahgat WM, Badawy M. A CNN based framework for classification of Alzheimer’s disease. Neural. Comput. Appl. NEURAL COMPUT. 2021;33(16):10415-28. https://doi.org/10.1007/s00521-021-05799-w.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.