Context-aware Location Privacy Protection Method

Authors

  • Haohua Qing Department of Applied Computing and Artificial Intelligence, Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia. https://orcid.org/0009-0005-4867-528X
  • Roliana Ibrahim Department of Applied Computing and Artificial Intelligence, Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Hui Wen Nies Department of Applied Computing and Artificial Intelligence, Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia.

DOI:

https://doi.org/10.21123/bsj.2024.9792

Keywords:

Context-Aware Security, Dynamic Privacy Preservation, Location privacy protection, Semantic Analysis in Location Data

Abstract

Location privacy protection has drawn increasing attention with the popularity of location-based services. This study proposes a context-aware location privacy protection method (CA-LP). CA-LP evaluates users' location privacy needs by mining their historical trajectories and estimating the privacy leakage degree of locations. Experiments compare CA-LP with other methods on metrics like privacy protection level, quality of service, privacy leakage risk, information loss, and average anonymous time. Results demonstrate CA-LP provides better privacy protection and service quality when considering all factors. CA-LP shows extensive practical value in location sharing applications.

References

Tal O, Liu Y. A Joint Deep Recommendation Framework for Location-Based Social Networks. Complexity, 2019. https://doi.org/10.1155/2019/2926749

Jiang H, Li J, Zhao P, Zeng F, Xiao Z, Iyengar A. Location Privacy-Preserving Mechanisms in Location-Based Services: A Comprehensive Survey. ACM Comput Surv, 2021;54 (1):1–36. https://doi.org/10.1145/3423165

Mehraj H, Jayadevappa D, Haleem S L A, Parveen R, Madduri A, Ayyagari M R, et al. Protection Motivation Theory Using Multi-Factor Authentication for Providing Security Over Social Networking Sites. Pattern Recognit Lett, 2021; 152: 218-224. https://doi.org/10.1016/j.patrec.2021.10.002

Jozani M, Ayaburi E, Ko M, Choo K.K. Privacy Concerns and Benefits of Engagement with Social Media-Enabled Apps: A Privacy Calculus Perspective. Comput Hum Behav, 2020; 107: 106260. https://doi.org/10.1016/j.chb.2020.106260

Gkoulalas-Divanis A, Loukides G, Sun J. Publishing Data from Electronic Health Records While Preserving Privacy: A Survey of Algorithms. J Biomed Inform. 2014; 50: 4–19. https://doi.org/10.1016/j.jbi.2014.06.002

Feng J, Wang Y, Wang J, Ren F. Blockchain-Based Data Management and Edge-Assisted Trusted Cloaking Area Construction for Location Privacy Protection in Vehicular Networks. IEEE Internet Things J, 2020; 8(4): 2087–2101. https://doi.org/10.1109/JIOT.2020.3038468

Almusaylim Z. A, Jhanjhi N. Z. Comprehensive Review: Privacy Protection of User in Location-Aware Services of Mobile Cloud Computing. Wireless Pers Commun, 2020;111:541–564. https://doi.org/10.1007/s11277-019-06872-3

Talat R, Obaidat M. S, Muzammal M, Sodhro A. H, Luo Z, et al. A Decentralized Approach to Privacy Preserving Trajectory Mining. Future Gener Comput Syst, 2020; 102: 382–392. https://doi.org/10.1016/j.future.2019.07.068

Xu S, Fu X, Cao J, Liu B, Wang Z. Survey on User Location Prediction Based on Geo-Social Networking Data. World Wide Web. 2020; 23(3): 1621-1664. https://doi.org/10.1007/s11280-019-00777-8

Halimi A, Ayday E. Real-Time Privacy Risk Quantification in Online Social Networks. In Proc 2021 IEEE/ACM Int Conf Adv Soc Netw Anal Min. 2021; 74–81. https://doi.org/10.1145/3487351.3488272

Gangarde R, Sharma A, Pawar A, Joshi R, Gonge S. Privacy Preservation in Online Social Networks Using Multiple-Graph-Properties-Based Clustering to Ensure K-Anonymity, L-Diversity, and T-Closeness. Electronics, 2021; 10(22): 2877. https://doi.org/10.3390/electronics10222877

Gedik B, Liu L. Protecting Location Privacy with Personalized K-Anonymity: Architecture and Algorithms. IEEE Trans Mob Comput, 2007; 7(1): 1–18. https://doi.org/10.1109/TMC.2007.1062

Khoshgozaran A, Shahabi C. Blind Evaluation of Nearest Neighbor Queries Using Space Transformation to Preserve Location Privacy. In Proc Int Symp Spat Temporal Databases, 2007; 239–257. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73540-3_14

Palanisamy B, Joshi J. Protecting Privacy in Indoor Positioning Systems. In Indoor Wayfinding and Navigation, 2015; 242–259. CRC Press. https://doi.org/10.1109/ICL-GNSS49876.2020.9115496

Shokri R, Theodorakopoulos G, Troncoso C. Privacy Games Along Location Traces: A Game-Theoretic Framework for Optimizing Location Privacy. ACM Trans Priv Secur. 2016; 19(4): 1–31. https://doi.org/10.1145/3009908

Andrés M E, Bordenabe N E, Chatzikokolakis K, Palamidessi C. Geo-Indistinguishability: Differential Privacy for Location-Based Systems. In Proc 2013 ACM SIGSAC Conf Comput Commun Secur, 2013; 901–914. https://doi.org/10.1145/2508859.2516735

Wang Y, Li M, Luo S, Xin Y, Zhu H, Chen Y, et al. LRM: A Location Recombination Mechanism for Achieving Trajectory k-Anonymity Privacy Protection. IEEE Access, 2019; 7: 182886–182905. https://doi.org/10.1109/ACCESS.2019.2960008

Ma C, Li J, Wei K, Liu B, Ding M, Yuan L, et al. Trusted AI in Multi-Agent Systems: An Overview of Privacy and Security for Distributed Learning. arXiv preprint arXiv:2202.09027. 2022. https://doi.org/10.1109/JPROC.2023.3306773

Zhu Q, Hu H, Xu C, Xu J, Lee W. C. Geo-Social Group Queries with Minimum Acquaintance Constraints. VLDB J, 2017; 26: 709–727. https://doi.org/10.1007/s00778-017-0473-6

Li Y W, Vilathgamuwa D M, Loh P. C, Blaabjerg F A. Dual-Functional Medium Voltage Level DVR to Limit Downstream Fault Currents. IEEE Trans Power Electron. 2006; 22(4): 1330–1340. https://doi.org/10.1109/TPEL.2007.900589

Huang L, Yamane H, Matsuura K, Sezaki K. Towards Modeling Wireless Location Privacy. Privacy Enhancing Technologies, 5th International Workshop. PET 2005, Cavtat, Croatia. Lecture Notes in Computer Science. 2005; 3856: 59–77. Springer Berlin Heidelberg. https://doi.org/10.1007/11767831_5

Lu Y, Yang S, Chau P. Y, Cao Y. Dynamics Between the Trust Transfer Process and Intention to Use Mobile Payment Services: A Cross-Environment Perspective. Inf Manag, 2011; 48(8): 393–403. https://doi.org/10.1016/j.im.2011.09.006

Yadav A S, Kumar S, Karetla G R, Cotrina-Aliaga J C, Arias-Gonzáles J L, Kumar V, et al. A Feature Extraction Using Probabilistic Neural Network and BTFSC-Net Model with Deep Learning for Brain Tumor Classification. J Imaging. 2022; 9(1): 10. https://doi.org/10.3390/jimaging9010010

Albouq S S, Abi Sen A A, Namoun A, Bahbouh N M, Alkhodre A B, Alshanqiti A. A Double Obfuscation Approach for Protecting the Privacy of IoT Location Based Applications. IEEE Access. 2020; 8: 129415–129431. https://doi.org/10.1109/ACCESS.2020.3009200

Kumar S, Samriya J K, Yadav A S, Kumar M. To Improve Scalability with Boolean Matrix Using Efficient Gossip Failure Detection and Consensus Algorithm for PeerSim Simulator in IoT Environment. Int J Inf Technol. 2022; 14(5): 2297–2307. https://doi.org/10.1007/s41870-022-00989-8

Kumar N, Kumar S. A Salp Swarm Optimization for Dynamic Resource Management to Improve Quality of Service in Cloud Computing and IoT Environment. Int J Sens Wirel Commun. Control. 2022; 12(1): 88–94. https://doi.org/10.2174/2210327911666210126122119

Kumar N, Kumar S. Conceptual Service Level Agreement Mechanism to Minimize the SLA Violation with SLA Negotiation Process in Cloud Computing Environment. Baghdad Sci J. 2021; 18(2 Suppl.): 1020. https://doi.org/10.21123/bsj.2021.18.2(Suppl.).1020

Kumar N, Kumar S. Virtual Machine Placement Using Statistical Mechanism in Cloud Computing Environment. Int J Appl Evol Comput. 2018; 9(3): 23–31. https://doi.org/10.4018/IJAEC.2018070103

Chen X, Simchi-Levi D, Wang Y. Privacy-Preserving Dynamic Personalized Pricing with Demand Learning. Manag Sci. 2022; 68(7): 4878–4898. https://doi.org/10.1287/mnsc.2021.4129

Neisse R, Steri G, Baldini G, Tragos E, Fovino I N, Botterman M. Dynamic Context-Aware Scalable and Trust-Based IoT Security, Privacy Framework. 2022; 199–224. River Publishers. https://doi.org/10.1201/9781003338628-5

Qing H, Ibrahim R, Nies H W. Location Anonymous Query Algorithm Based on Road Networks. In Proc. 2022 Int Conf Augment Intell Sustain Syst. 2022; Trichy, India. 1477–1480. https://doi.org/10.1109/ICAISS55157.2022.10011062

Jiang H, Zhao P, Wang C. RobLoP: Towards robust privacy preserving against location dependent attacks in continuous LBS queries. IEEE/ACM Transactions on Networking. 2018;26(2):1018-32. https://doi.org/10.1109/TNET.2018.2812851

Phan T N, Dang T K, Truong T A, Thanh H L. A context-aware privacy-preserving solution for location-based services. Int Conf Adv Comput Appl. IEEE, 2018; 132-139. https://doi.org/10.1109/ACOMP.2018.00028

Downloads

Published

2024-10-01

Issue

Section

article

How to Cite

1.
Context-aware Location Privacy Protection Method. Baghdad Sci.J [Internet]. 2024 Oct. 1 [cited 2024 Dec. 19];21(10):3344. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9792

Similar Articles

You may also start an advanced similarity search for this article.