طريقة حماية خصوصية الموقع الواعية للسياق

المؤلفون

  • Haohua Qing قسم الحوسبة التطبيقية والذكاء الاصطناعي، كلية الحوسبة، جامعة تكنولوجي ماليزيا، جوهور، ماليزيا. https://orcid.org/0009-0005-4867-528X
  • Roliana Ibrahim قسم الحوسبة التطبيقية والذكاء الاصطناعي، كلية الحوسبة، جامعة تكنولوجي ماليزيا، جوهور، ماليزيا.
  • Hui Wen Nies قسم الحوسبة التطبيقية والذكاء الاصطناعي، كلية الحوسبة، جامعة تكنولوجي ماليزيا، جوهور، ماليزيا.

DOI:

https://doi.org/10.21123/bsj.2024.9792

الكلمات المفتاحية:

الأمان الواعي للسياق، حفظ الخصوصية الديناميكي، الخدمات المبنية على المواقع، حماية خصوصية الموقع، التحليل الدلالي في بيانات المواقع

الملخص

لقد أصبحت حماية خصوصية الموقع موضوعاً يحظى بإهتمام متزايد مع شعبية الخدمات المبنية على المواقع. تقترح هذه الدراسة طريقة حماية خصوصية الموقع الواعية للسياق (CA-LP). تقوم CA-LP بتقييم احتياجات خصوصية الموقع لدى المستخدمين من خلال تحليل مساراتهم التاريخية وتقدير درجة تسرب الخصوصية في المواقع. تقارن التجارب بين CA-LP وطرق أخرى من حيث مقاييس مثل مستوى حماية الخصوصية، جودة الخدمة، مخاطر تسرب الخصوصية، فقدان المعلومات، ومتوسط الوقت المجهول. تظهر النتائج أن CA-LP توفر حماية خصوصية وجودة خدمة أفضل عند النظر في جميع العوامل. تظهر CA-LP قيمة عملية واسعة في تطبيقات مشاركة المواقع.

المراجع

Tal O, Liu Y. A Joint Deep Recommendation Framework for Location-Based Social Networks. Complexity, 2019. https://doi.org/10.1155/2019/2926749

Jiang H, Li J, Zhao P, Zeng F, Xiao Z, Iyengar A. Location Privacy-Preserving Mechanisms in Location-Based Services: A Comprehensive Survey. ACM Comput Surv, 2021;54 (1):1–36. https://doi.org/10.1145/3423165

Mehraj H, Jayadevappa D, Haleem S L A, Parveen R, Madduri A, Ayyagari M R, et al. Protection Motivation Theory Using Multi-Factor Authentication for Providing Security Over Social Networking Sites. Pattern Recognit Lett, 2021; 152: 218-224. https://doi.org/10.1016/j.patrec.2021.10.002

Jozani M, Ayaburi E, Ko M, Choo K.K. Privacy Concerns and Benefits of Engagement with Social Media-Enabled Apps: A Privacy Calculus Perspective. Comput Hum Behav, 2020; 107: 106260. https://doi.org/10.1016/j.chb.2020.106260

Gkoulalas-Divanis A, Loukides G, Sun J. Publishing Data from Electronic Health Records While Preserving Privacy: A Survey of Algorithms. J Biomed Inform. 2014; 50: 4–19. https://doi.org/10.1016/j.jbi.2014.06.002

Feng J, Wang Y, Wang J, Ren F. Blockchain-Based Data Management and Edge-Assisted Trusted Cloaking Area Construction for Location Privacy Protection in Vehicular Networks. IEEE Internet Things J, 2020; 8(4): 2087–2101. https://doi.org/10.1109/JIOT.2020.3038468

Almusaylim Z. A, Jhanjhi N. Z. Comprehensive Review: Privacy Protection of User in Location-Aware Services of Mobile Cloud Computing. Wireless Pers Commun, 2020;111:541–564. https://doi.org/10.1007/s11277-019-06872-3

Talat R, Obaidat M. S, Muzammal M, Sodhro A. H, Luo Z, et al. A Decentralized Approach to Privacy Preserving Trajectory Mining. Future Gener Comput Syst, 2020; 102: 382–392. https://doi.org/10.1016/j.future.2019.07.068

Xu S, Fu X, Cao J, Liu B, Wang Z. Survey on User Location Prediction Based on Geo-Social Networking Data. World Wide Web. 2020; 23(3): 1621-1664. https://doi.org/10.1007/s11280-019-00777-8

Halimi A, Ayday E. Real-Time Privacy Risk Quantification in Online Social Networks. In Proc 2021 IEEE/ACM Int Conf Adv Soc Netw Anal Min. 2021; 74–81. https://doi.org/10.1145/3487351.3488272

Gangarde R, Sharma A, Pawar A, Joshi R, Gonge S. Privacy Preservation in Online Social Networks Using Multiple-Graph-Properties-Based Clustering to Ensure K-Anonymity, L-Diversity, and T-Closeness. Electronics, 2021; 10(22): 2877. https://doi.org/10.3390/electronics10222877

Gedik B, Liu L. Protecting Location Privacy with Personalized K-Anonymity: Architecture and Algorithms. IEEE Trans Mob Comput, 2007; 7(1): 1–18. https://doi.org/10.1109/TMC.2007.1062

Khoshgozaran A, Shahabi C. Blind Evaluation of Nearest Neighbor Queries Using Space Transformation to Preserve Location Privacy. In Proc Int Symp Spat Temporal Databases, 2007; 239–257. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73540-3_14

Palanisamy B, Joshi J. Protecting Privacy in Indoor Positioning Systems. In Indoor Wayfinding and Navigation, 2015; 242–259. CRC Press. https://doi.org/10.1109/ICL-GNSS49876.2020.9115496

Shokri R, Theodorakopoulos G, Troncoso C. Privacy Games Along Location Traces: A Game-Theoretic Framework for Optimizing Location Privacy. ACM Trans Priv Secur. 2016; 19(4): 1–31. https://doi.org/10.1145/3009908

Andrés M E, Bordenabe N E, Chatzikokolakis K, Palamidessi C. Geo-Indistinguishability: Differential Privacy for Location-Based Systems. In Proc 2013 ACM SIGSAC Conf Comput Commun Secur, 2013; 901–914. https://doi.org/10.1145/2508859.2516735

Wang Y, Li M, Luo S, Xin Y, Zhu H, Chen Y, et al. LRM: A Location Recombination Mechanism for Achieving Trajectory k-Anonymity Privacy Protection. IEEE Access, 2019; 7: 182886–182905. https://doi.org/10.1109/ACCESS.2019.2960008

Ma C, Li J, Wei K, Liu B, Ding M, Yuan L, et al. Trusted AI in Multi-Agent Systems: An Overview of Privacy and Security for Distributed Learning. arXiv preprint arXiv:2202.09027. 2022. https://doi.org/10.1109/JPROC.2023.3306773

Zhu Q, Hu H, Xu C, Xu J, Lee W. C. Geo-Social Group Queries with Minimum Acquaintance Constraints. VLDB J, 2017; 26: 709–727. https://doi.org/10.1007/s00778-017-0473-6

Li Y W, Vilathgamuwa D M, Loh P. C, Blaabjerg F A. Dual-Functional Medium Voltage Level DVR to Limit Downstream Fault Currents. IEEE Trans Power Electron. 2006; 22(4): 1330–1340. https://doi.org/10.1109/TPEL.2007.900589

Huang L, Yamane H, Matsuura K, Sezaki K. Towards Modeling Wireless Location Privacy. Privacy Enhancing Technologies, 5th International Workshop. PET 2005, Cavtat, Croatia. Lecture Notes in Computer Science. 2005; 3856: 59–77. Springer Berlin Heidelberg. https://doi.org/10.1007/11767831_5

Lu Y, Yang S, Chau P. Y, Cao Y. Dynamics Between the Trust Transfer Process and Intention to Use Mobile Payment Services: A Cross-Environment Perspective. Inf Manag, 2011; 48(8): 393–403. https://doi.org/10.1016/j.im.2011.09.006

Yadav A S, Kumar S, Karetla G R, Cotrina-Aliaga J C, Arias-Gonzáles J L, Kumar V, et al. A Feature Extraction Using Probabilistic Neural Network and BTFSC-Net Model with Deep Learning for Brain Tumor Classification. J Imaging. 2022; 9(1): 10. https://doi.org/10.3390/jimaging9010010

Albouq S S, Abi Sen A A, Namoun A, Bahbouh N M, Alkhodre A B, Alshanqiti A. A Double Obfuscation Approach for Protecting the Privacy of IoT Location Based Applications. IEEE Access. 2020; 8: 129415–129431. https://doi.org/10.1109/ACCESS.2020.3009200

Kumar S, Samriya J K, Yadav A S, Kumar M. To Improve Scalability with Boolean Matrix Using Efficient Gossip Failure Detection and Consensus Algorithm for PeerSim Simulator in IoT Environment. Int J Inf Technol. 2022; 14(5): 2297–2307. https://doi.org/10.1007/s41870-022-00989-8

Kumar N, Kumar S. A Salp Swarm Optimization for Dynamic Resource Management to Improve Quality of Service in Cloud Computing and IoT Environment. Int J Sens Wirel Commun. Control. 2022; 12(1): 88–94. https://doi.org/10.2174/2210327911666210126122119

Kumar N, Kumar S. Conceptual Service Level Agreement Mechanism to Minimize the SLA Violation with SLA Negotiation Process in Cloud Computing Environment. Baghdad Sci J. 2021; 18(2 Suppl.): 1020. https://doi.org/10.21123/bsj.2021.18.2(Suppl.).1020

Kumar N, Kumar S. Virtual Machine Placement Using Statistical Mechanism in Cloud Computing Environment. Int J Appl Evol Comput. 2018; 9(3): 23–31. https://doi.org/10.4018/IJAEC.2018070103

Chen X, Simchi-Levi D, Wang Y. Privacy-Preserving Dynamic Personalized Pricing with Demand Learning. Manag Sci. 2022; 68(7): 4878–4898. https://doi.org/10.1287/mnsc.2021.4129

Neisse R, Steri G, Baldini G, Tragos E, Fovino I N, Botterman M. Dynamic Context-Aware Scalable and Trust-Based IoT Security, Privacy Framework. 2022; 199–224. River Publishers. https://doi.org/10.1201/9781003338628-5

Qing H, Ibrahim R, Nies H W. Location Anonymous Query Algorithm Based on Road Networks. In Proc. 2022 Int Conf Augment Intell Sustain Syst. 2022; Trichy, India. 1477–1480. https://doi.org/10.1109/ICAISS55157.2022.10011062

Jiang H, Zhao P, Wang C. RobLoP: Towards robust privacy preserving against location dependent attacks in continuous LBS queries. IEEE/ACM Transactions on Networking. 2018;26(2):1018-32. https://doi.org/10.1109/TNET.2018.2812851

Phan T N, Dang T K, Truong T A, Thanh H L. A context-aware privacy-preserving solution for location-based services. Int Conf Adv Comput Appl. IEEE, 2018; 132-139. https://doi.org/10.1109/ACOMP.2018.00028

التنزيلات

منشور

2024-10-01

إصدار

القسم

article

كيفية الاقتباس

1.
طريقة حماية خصوصية الموقع الواعية للسياق. Baghdad Sci.J [انترنت]. 1 أكتوبر، 2024 [وثق 19 ديسمبر، 2024];21(10):3344. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9792

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.