Syntheses, Characterisation, Thermal Analysis and Theoretical Studies of Some Imino Ethanone Metal Complexes

Main Article Content

Safaa H. Ali
https://orcid.org/0000-0003-4924-7453
Saad S. Mohammed
Hadi T. Obaid
Sanjeewa Gamagedara

Abstract

The current study is designed to synthesize four new bidentate metal complexes [MCl2L1] M = Co, Cu and L1 = 1,2-Diphenyl-2-(phenylimino)-1-ethanone or  [MCl2L2] M = Co, Cu and L2 = 1,2-Diphenyl-2-(p-tolylimino)-1-ethanone. In addition, theoretical study preforms to predict the chemical reactivity and stability of the prepared complexes. Thus, the density function theory (DFT) studies, quantum chemical descriptors like chemical hardness (η), electronic chemical potential (μ), and electronegativity (χ) are considered. Complexes were synthesized in a simple one-pot reaction and chemical structures confirmed by different analysis techniques such as Mass spectra, FT-IR, UV-Vis spectroscopies and thermo gravimetric analysis (TGA). The prepared complexes showed high level of thermal stability according to analysis results as the melting point of the complexes ranged (249-251 oC).

Article Details

How to Cite
1.
Syntheses, Characterisation, Thermal Analysis and Theoretical Studies of Some Imino Ethanone Metal Complexes. Baghdad Sci.J [Internet]. 2024 Dec. 1 [cited 2025 Jan. 22];21(12):3661-72. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9852
Section
article

How to Cite

1.
Syntheses, Characterisation, Thermal Analysis and Theoretical Studies of Some Imino Ethanone Metal Complexes. Baghdad Sci.J [Internet]. 2024 Dec. 1 [cited 2025 Jan. 22];21(12):3661-72. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9852

References

Khan E, Hanif M, Akhtar MS. Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes. Rev Inorg Chem. 2022; 42(4): 307-325. https://doi.org/10.1515/revic-2021-0034

Ali SH, Abd Alredha HM, Abdulhussein HS. Antibiotic activity of new species of schiff base metal complexes. Per Tchê Quím. 2020; 17(35): 837-859. http://dx.doi.org/10.52571/PTQ.v17.n35.2020.71_ALI_pgs_837_859.pdf

Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J Coord Chem. 2022; 75(15-16): 2018-2038. https://doi.org/10.1080/00958972.2022.2131402

Sandhu QUA, Pervaiz M, Majid A, Younas U, Saeed Z, Ashraf A, et al. Schiff base metal complexes as anti-inflammatory agents. J Coord Chem. 2023; 76(9-10): 1094-1118. https://doi.org/10.1080/00958972.2023.2226794

Al-Shboul TM, El-khateeb M, Obeidat ZH, Ababneh TS, Al-Tarawneh SS, Al Zoubi MS, et al. Synthesis, characterization, computational and biological activity of some Schiff bases and their Fe, Cu and Zn complexes. Inorganics. 2022; 10(8): 112-127. https://doi.org/10.3390/inorganics10080112

Oliveri IP, Consiglio G, Munzi G, Failla S. Deaggregation properties and transmetalation studies of a zinc (II) salen-type Schiff-base complex. Dalton Trans. 2022; 51(31): 11859-11867. https://doi.org/10.1039/D2DT01448C

Jain S, Rana M, Sultana R, Mehandi R. Schiff base metal complexes as antimicrobial and anticancer agents. Polycycl Aromat Compd. 2023; 43(7): 6351-6406. https://doi.org/10.1080/10406638.2022.2117210

Abd Al-Redha HM, Ali SH, Mohammed SS. Syntheses, structures and biological activity of some schiff base metal complexes. Baghdad Sci J. 2021; 19(3): 704-715. https://doi.org/10.21123/bsj.2022.19.3.0704

Skrodzki M, Garrido VO, Csáky AG, Pawluć P. Searching for highly active cobalt catalysts bearing schiff base ligands for markovnikov-selective hydrosilylation of alkynes with tertiary silanes. J Cata. 2022; 411: 116-121. https://doi.org/10.1016/j.jcat.2022.05.002

le Roux WH, Matthews M, Lederer A, van Reenen AJ, Malgas-Enus R. First report of schiff-base nickel nanoparticle-catalyzed oligomerization and polymerization of norbornene. J Cata. 2022; 405: 571-587. https://doi.org/10.1016/j.jcat.2021.11.008

Białek M, Fryga J, Spaleniak G, Matsko MA, Hajdasz N. Ethylene homo-and copolymerization catalyzed by vanadium, zirconium, and titanium complexes having potentially tridentate schiff base ligands. J Cata. 2021; 400: 184-194. https://doi.org/10.1016/j.jcat.2021.05.036

Mondal K, Dey A, Mistri S. Aminoethylpiperazine Based Metal Schiff Base Complexes: Catalytic and Biological Activities. Comm Inorg Chem. 2023; 43(5): 357-381.https://doi.org/10.1080/02603594.2022.2140146

Zheng A, Zhou Q, Ding B, Li D, Zhang T, Hou Z. Reduced amino acid schiff base-iron (III) complexes catalyzing oxidation of cyclohexane with hydrogen peroxide. Euro J Inorg Chem. 2021; (33): 3385-3395. https://doi.org/10.1002/ejic.202100356

Shekhar S, Khan AM, Sharma S, Sharma B, Sarkar A. Schiff base metallodrugs in antimicrobial and anticancer chemotherapy applications: a comprehensive review. Emerg Mater. 2022; 5(2): 279-293. https://doi.org/10.1007/s42247-021-00234-1

Alorini T, Daoud I, Al-Hakimi AN, Alminderej F, Albadri AE. An experimental and theoretical investigation of antimicrobial and anticancer properties of some new Schiff base complexes. Res Chem Intermed. 2023; 49(4): 1701-1730. https://doi.org/10.1007/s11164-022-04922-3

Zong LP, Chen X, Zhu D, Li XJ, Li F, Cosnier S, et al. Schiff base complexes with covalently anchored luminophores: self-enhanced electrochemiluminescence detection of neomycin. ACS sensors. 2022; 7(10): 3085-3093. https://doi.org/10.1021/acssensors.2c01425

Kanwal A, Parveen B, Ashraf R, Haider N, Ali KG. A review on synthesis and applications of some selected Schiff bases with their transition metal complexes. J Coord Chem. 2022; 75(19-24): 2533-2556. https://doi.org/10.1080/00958972.2022.2138364

Yan L, Li Z, Xiong Y, Zhong X, Peng S, Li H. Zinc (ii) Schiff base complexes as dual probes for the detection of NH4+ and HPO4 2− ions. New J Chem. 2022; 46(27): 12910-12917. https://doi.org/10.1039/D2NJ01686A

Jain A, De S, Barman P. Microwave-assisted synthesis and notable applications of Schiff-base and metal complexes: a comparative study. Res Chem Intermed. 2022; 48(5): 2199-2251. https://doi.org/10.1007/s11164-022-04708-7

Chen YT, Zhang SN, Wang ZF, Wei QM, Zhang SH. Discovery of thirteen cobalt (II) and copper (II) salicylaldehyde Schiff base complexes that induce apoptosis and autophagy in human lung adenocarcinoma A549/DDP cells and that can overcome cisplatin resistance in vitro and in vivo. Dalton Trans. 2022; 51(10): 4068-4078. https://doi.org/10.1039/D1DT03749H

Hu F, Yang X, Leng X, Wang C, Yang K, Zhang L, et al. Construction of a near-IR-luminescent rectangular Yb (III) complex from a dodecadentate schiff base ligand for the excitation wavelength dependent detection of aloe emodin (a Natural Medicinal Ingredient). Inorg Chem. 2023; 62(6): 2508-2512. https://doi.org/10.1021/acs.inorgchem.2c04301

Wang K, Yang H, Liao Z, Li S, Hambsch M, Fu G, et al. Monolayer assisted surface initiated schiff base mediated aldol polycondensation for the synthesis of crystalline sp2 carbon-conjugated covalent organic framework thin films. J Am. Chem. Soc. 2023; 145(9): 5203-5210. https://doi.org/10.1021/jacs.2c12186

Liu SB. Conceptual density functional theory and some recent developments. Acta Physico-Chimica Sinica. 2009; 25(3): 590-600.

Frau J, Glossman-Mitnik D. Conceptual DFT descriptors of amino acids with potential corrosion inhibition properties calculated with the latest minnesota density functionals. Front Chem. 2017; 5(16): 1-8. https://doi.org/10.3389/fchem.2017.00016

Ali SH, Al-Redha HM, Sachit BA. Antibacterial activity of some salen metal complexes. In IOP Conf Ser.: Mat Sci Eng. 2020; 928(5): 052016. https://doi.org/10.1088/1757-899X/928/5/052016

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2010.

Schlegel HB. Optimization of equilibrium geometries and transition structures. J Comput Chem. 1982; 3(2): 214-218. https://doi.org/10.1002/jcc.540030212

Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular orbital methods. Xii, further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys. 1972; 56(5): 2257-2261. https://doi.org/10.1063/1.1677527

Dennington R, Keith T, Millam J. Semichem Inc. Shawnee Mission KS, Gauss View, Version. 2009; 5(8): 1-8.

Ghosh MK, Pathak S, Ghorai TK. Synthesis of two mononuclear schiff base metal (m= fe, cu) complexes: mof structure, dye degradation, H2O2 sensing, and dna binding property. ACS omega. 2019; 4(14): 16068-16079. https://doi.org/10.1021/acsomega.9b02268

Garcia-Valle FM, Tabernero V, Cuenca T, Mosquera ME, Cano J. Intramolecular C–F activation in Schiff-base alkali metal complexes. Organometallics. 2019; 38(4): 894-904. https://doi.org/10.1021/acs.organomet.8b00868

Klamm BE, Windorff CJ, Celis-Barros C, Marsh ML, Meeker DS, Albrecht-Schmitt TE. Experimental and theoretical comparison of transition-metal and actinide tetravalent schiff base coordination complexes. Inorg Chem. 2018; 57(24): 15389-15398. https://doi.org/10.1021/acs.inorgchem.8b02700

Dwivedi N, Sunkari SS, Verma A, Saha S. Molecular packing dependent solid state fluorescence response of supramolecular metal–organic frameworks: phenoxo-bridged trinuclear Zn (II) centered schiff base complexes with halides and pseudohalides. Cryst Growth Des. 2018; 18(9): 5628-5637. https://doi.org/10.1021/acs.cgd.8b00948

Dong YL, Liu HR, Wang SM, Guan GW, Yang QY. Immobilizing isatin-schiff base complexes in NH2-UiO-66 for highly photocatalytic CO2 reduction. ACS Catalysis. 2023; 13(4): 2547-2554. https://doi.org/10.1021/acscatal.2c04588

Ghosh TK, Maity S, Ghosh S, Gomila RM, Frontera A, Ghosh A. Role of redox-inactive metal ions in modulating the reduction potential of uranyl schiff base complexes: detailed experimental and theoretical studies. Inorg Chem. 2022; 61(18): 7130-7142. https://doi.org/10.1021/acs.inorgchem.2c00645

Issa YM, Hassib HB, Abdelaal HE. 1H-NMR, 13C-NMR and Mass spectral studies of some schiff bases derived from 3-amino-1,2,4-triazole. Spectrochimica Acta Part A. 2009; 74: 902-910. https://doi.org/10.1016/j.saa.2009.08.042

Irawan C, Islamiyati D, Putri RP, Madiabu MJ. Synthesis and mass spectrum characterization of lyrame schiff base for synthetic ingredients in perfumes industry. Orient J Chem. 2018; 34(6): 3118-3122. https://doi.org/10.13005/OJC%2F340657

Rzaczynska Z, Danczowska-Burdon A, Sienkiewicz-Gromiuk J. Thermal and spectroscopic properties of light lanthanides(iii) and sodium complexes of 2, 5-pyridinedicarboxylic acid. J Therm Anal Calor. 2010; 101(2): 671-677. https://doi.org/10.1007/s10973-010-0941-3

Caires FJ, Lima LS, Carvalho CT, Giago RJ, Ionashiro M. Thermal behaviour of malonic acid, sodium malonate and its compounds with some bivalent transition metal ions. Thermochimica Acta. 2010; 497: 35-40. https://doi.org/10.1016/j.tca.2009.08.013

Obi-Egbedi NO, Ojo ND. Synthesis, light harvesting efciency, photophysical and nonlinear optical properties of 3-(5-(4-hydroxybenzylideneamino) naphthalen-1-yliminomethyl)phenol: Spectroscopic and quantum chemical approach. Res Chem Inter. 2021; 47(12): 5249-5266. https://doi.org/10.1007/s11164-021-04579-4

Awolope RO, Ejidike IP, Clayton HS. Schiff base metal complexes as a dual antioxidant and antimicrobial agents. J App Pharma Sci. 2023; 13(3), 132-140. https://doi.org/10.7324/JAPS.2023.91056