تخليق وتشخيص وتحليل حراري ودراسة نظرية لبعض معقدات الايمينوايثانون الفلزية
DOI:
https://doi.org/10.21123/bsj.2024.9852الكلمات المفتاحية:
معقدات فلزية، قواعد شف، تخليق، تحلل حراري، دراسات نظرية.الملخص
الدراسة الحالية صممت لتخليق أربعة معقدات جديدة ثنائية السن من معقدات الايمينوايثانون الفلزية. اذ تضمن التفاعل بين مركبات الايمينوايثانون العضوية كليكاندات واملاح فلزات النحاس والكوبلت (كلوريد النحاس وكلوريد الكوبلت) اذ كانت مركبات الايمينوايثانون تحتوي على معوضات مختلفة على حلقة الفنيل مثل مجموعة المثيل في الموقع بارا. حصل التناسق بين مركز الذرة الفلزية والمجموعات الفعالة على اليكاندات والتي شملت مجاميع (الايزوميثين والايثانون). تضمن البحث كذلك مجموعة من الدراسات النظرية لاستقراء الفعالية الكيميائية والثابتية الحرارية للمعقدات المحضرة شملت دراسات الكثافة الوظيفية وميكانيك الكم الذي بدوره شمل العوامل التالية الصلابة الكيميائية، الاحتمالية الالكترونية الكيميائية، والسالبية الكهربائية. استخدم تفاعل الخطوة الوحدة بين الفلزات والمعقدات لتحضير المعقدات والتي شخصت بدورها من خلال عدد من التقنيات الكيميائية مثل مطيافية الاشعة تحت الحمراء ومطيافية الاشعة فوق البنفسجية والتحلل الحراري وطيف الكتلة لتحديد التركيب الكيميائي الدقيق للمركبات المحضرة ومعقداتها. اثبتت الدراسات الحرارية استقرارية حرارية عالية للمعقدات المحضرة اذ تراوحت درجات انصهار المعقدات المحضرة بين 249-251 oم.
Received 05/10/2023
Revised 09/02/2024
Accepted 11/02/2024
Published Online First 20/05/2024
المراجع
Khan E, Hanif M, Akhtar MS. Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes. Rev Inorg Chem. 2022; 42(4): 307-325. https://doi.org/10.1515/revic-2021-0034
Ali SH, Abd Alredha HM, Abdulhussein HS. Antibiotic activity of new species of schiff base metal complexes. Per Tchê Quím. 2020; 17(35): 837-859. http://dx.doi.org/10.52571/PTQ.v17.n35.2020.71_ALI_pgs_837_859.pdf
Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J Coord Chem. 2022; 75(15-16): 2018-2038. https://doi.org/10.1080/00958972.2022.2131402
Sandhu QUA, Pervaiz M, Majid A, Younas U, Saeed Z, Ashraf A, et al. Schiff base metal complexes as anti-inflammatory agents. J Coord Chem. 2023; 76(9-10): 1094-1118. https://doi.org/10.1080/00958972.2023.2226794
Al-Shboul TM, El-khateeb M, Obeidat ZH, Ababneh TS, Al-Tarawneh SS, Al Zoubi MS, et al. Synthesis, characterization, computational and biological activity of some Schiff bases and their Fe, Cu and Zn complexes. Inorganics. 2022; 10(8): 112-127. https://doi.org/10.3390/inorganics10080112
Oliveri IP, Consiglio G, Munzi G, Failla S. Deaggregation properties and transmetalation studies of a zinc (II) salen-type Schiff-base complex. Dalton Trans. 2022; 51(31): 11859-11867. https://doi.org/10.1039/D2DT01448C
Jain S, Rana M, Sultana R, Mehandi R. Schiff base metal complexes as antimicrobial and anticancer agents. Polycycl Aromat Compd. 2023; 43(7): 6351-6406. https://doi.org/10.1080/10406638.2022.2117210
Abd Al-Redha HM, Ali SH, Mohammed SS. Syntheses, structures and biological activity of some schiff base metal complexes. Baghdad Sci J. 2021; 19(3): 704-715. https://doi.org/10.21123/bsj.2022.19.3.0704
Skrodzki M, Garrido VO, Csáky AG, Pawluć P. Searching for highly active cobalt catalysts bearing schiff base ligands for markovnikov-selective hydrosilylation of alkynes with tertiary silanes. J Cata. 2022; 411: 116-121. https://doi.org/10.1016/j.jcat.2022.05.002
le Roux WH, Matthews M, Lederer A, van Reenen AJ, Malgas-Enus R. First report of schiff-base nickel nanoparticle-catalyzed oligomerization and polymerization of norbornene. J Cata. 2022; 405: 571-587. https://doi.org/10.1016/j.jcat.2021.11.008
Białek M, Fryga J, Spaleniak G, Matsko MA, Hajdasz N. Ethylene homo-and copolymerization catalyzed by vanadium, zirconium, and titanium complexes having potentially tridentate schiff base ligands. J Cata. 2021; 400: 184-194. https://doi.org/10.1016/j.jcat.2021.05.036
Mondal K, Dey A, Mistri S. Aminoethylpiperazine Based Metal Schiff Base Complexes: Catalytic and Biological Activities. Comm Inorg Chem. 2023; 43(5): 357-381.https://doi.org/10.1080/02603594.2022.2140146
Zheng A, Zhou Q, Ding B, Li D, Zhang T, Hou Z. Reduced amino acid schiff base-iron (III) complexes catalyzing oxidation of cyclohexane with hydrogen peroxide. Euro J Inorg Chem. 2021; (33): 3385-3395. https://doi.org/10.1002/ejic.202100356
Shekhar S, Khan AM, Sharma S, Sharma B, Sarkar A. Schiff base metallodrugs in antimicrobial and anticancer chemotherapy applications: a comprehensive review. Emerg Mater. 2022; 5(2): 279-293. https://doi.org/10.1007/s42247-021-00234-1
Alorini T, Daoud I, Al-Hakimi AN, Alminderej F, Albadri AE. An experimental and theoretical investigation of antimicrobial and anticancer properties of some new Schiff base complexes. Res Chem Intermed. 2023; 49(4): 1701-1730. https://doi.org/10.1007/s11164-022-04922-3
Zong LP, Chen X, Zhu D, Li XJ, Li F, Cosnier S, et al. Schiff base complexes with covalently anchored luminophores: self-enhanced electrochemiluminescence detection of neomycin. ACS sensors. 2022; 7(10): 3085-3093. https://doi.org/10.1021/acssensors.2c01425
Kanwal A, Parveen B, Ashraf R, Haider N, Ali KG. A review on synthesis and applications of some selected Schiff bases with their transition metal complexes. J Coord Chem. 2022; 75(19-24): 2533-2556. https://doi.org/10.1080/00958972.2022.2138364
Yan L, Li Z, Xiong Y, Zhong X, Peng S, Li H. Zinc (ii) Schiff base complexes as dual probes for the detection of NH4+ and HPO4 2− ions. New J Chem. 2022; 46(27): 12910-12917. https://doi.org/10.1039/D2NJ01686A
Jain A, De S, Barman P. Microwave-assisted synthesis and notable applications of Schiff-base and metal complexes: a comparative study. Res Chem Intermed. 2022; 48(5): 2199-2251. https://doi.org/10.1007/s11164-022-04708-7
Chen YT, Zhang SN, Wang ZF, Wei QM, Zhang SH. Discovery of thirteen cobalt (II) and copper (II) salicylaldehyde Schiff base complexes that induce apoptosis and autophagy in human lung adenocarcinoma A549/DDP cells and that can overcome cisplatin resistance in vitro and in vivo. Dalton Trans. 2022; 51(10): 4068-4078. https://doi.org/10.1039/D1DT03749H
Hu F, Yang X, Leng X, Wang C, Yang K, Zhang L, et al. Construction of a near-IR-luminescent rectangular Yb (III) complex from a dodecadentate schiff base ligand for the excitation wavelength dependent detection of aloe emodin (a Natural Medicinal Ingredient). Inorg Chem. 2023; 62(6): 2508-2512. https://doi.org/10.1021/acs.inorgchem.2c04301
Wang K, Yang H, Liao Z, Li S, Hambsch M, Fu G, et al. Monolayer assisted surface initiated schiff base mediated aldol polycondensation for the synthesis of crystalline sp2 carbon-conjugated covalent organic framework thin films. J Am. Chem. Soc. 2023; 145(9): 5203-5210. https://doi.org/10.1021/jacs.2c12186
Liu SB. Conceptual density functional theory and some recent developments. Acta Physico-Chimica Sinica. 2009; 25(3): 590-600.
Frau J, Glossman-Mitnik D. Conceptual DFT descriptors of amino acids with potential corrosion inhibition properties calculated with the latest minnesota density functionals. Front Chem. 2017; 5(16): 1-8. https://doi.org/10.3389/fchem.2017.00016
Ali SH, Al-Redha HM, Sachit BA. Antibacterial activity of some salen metal complexes. In IOP Conf Ser.: Mat Sci Eng. 2020; 928(5): 052016. https://doi.org/10.1088/1757-899X/928/5/052016
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2010.
Schlegel HB. Optimization of equilibrium geometries and transition structures. J Comput Chem. 1982; 3(2): 214-218. https://doi.org/10.1002/jcc.540030212
Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular orbital methods. Xii, further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys. 1972; 56(5): 2257-2261. https://doi.org/10.1063/1.1677527
Dennington R, Keith T, Millam J. Semichem Inc. Shawnee Mission KS, Gauss View, Version. 2009; 5(8): 1-8.
Ghosh MK, Pathak S, Ghorai TK. Synthesis of two mononuclear schiff base metal (m= fe, cu) complexes: mof structure, dye degradation, H2O2 sensing, and dna binding property. ACS omega. 2019; 4(14): 16068-16079. https://doi.org/10.1021/acsomega.9b02268
Garcia-Valle FM, Tabernero V, Cuenca T, Mosquera ME, Cano J. Intramolecular C–F activation in Schiff-base alkali metal complexes. Organometallics. 2019; 38(4): 894-904. https://doi.org/10.1021/acs.organomet.8b00868
Klamm BE, Windorff CJ, Celis-Barros C, Marsh ML, Meeker DS, Albrecht-Schmitt TE. Experimental and theoretical comparison of transition-metal and actinide tetravalent schiff base coordination complexes. Inorg Chem. 2018; 57(24): 15389-15398. https://doi.org/10.1021/acs.inorgchem.8b02700
Dwivedi N, Sunkari SS, Verma A, Saha S. Molecular packing dependent solid state fluorescence response of supramolecular metal–organic frameworks: phenoxo-bridged trinuclear Zn (II) centered schiff base complexes with halides and pseudohalides. Cryst Growth Des. 2018; 18(9): 5628-5637. https://doi.org/10.1021/acs.cgd.8b00948
Dong YL, Liu HR, Wang SM, Guan GW, Yang QY. Immobilizing isatin-schiff base complexes in NH2-UiO-66 for highly photocatalytic CO2 reduction. ACS Catalysis. 2023; 13(4): 2547-2554. https://doi.org/10.1021/acscatal.2c04588
Ghosh TK, Maity S, Ghosh S, Gomila RM, Frontera A, Ghosh A. Role of redox-inactive metal ions in modulating the reduction potential of uranyl schiff base complexes: detailed experimental and theoretical studies. Inorg Chem. 2022; 61(18): 7130-7142. https://doi.org/10.1021/acs.inorgchem.2c00645
Issa YM, Hassib HB, Abdelaal HE. 1H-NMR, 13C-NMR and Mass spectral studies of some schiff bases derived from 3-amino-1,2,4-triazole. Spectrochimica Acta Part A. 2009; 74: 902-910. https://doi.org/10.1016/j.saa.2009.08.042
Irawan C, Islamiyati D, Putri RP, Madiabu MJ. Synthesis and mass spectrum characterization of lyrame schiff base for synthetic ingredients in perfumes industry. Orient J Chem. 2018; 34(6): 3118-3122. https://doi.org/10.13005/OJC%2F340657
Rzaczynska Z, Danczowska-Burdon A, Sienkiewicz-Gromiuk J. Thermal and spectroscopic properties of light lanthanides(iii) and sodium complexes of 2, 5-pyridinedicarboxylic acid. J Therm Anal Calor. 2010; 101(2): 671-677. https://doi.org/10.1007/s10973-010-0941-3
Caires FJ, Lima LS, Carvalho CT, Giago RJ, Ionashiro M. Thermal behaviour of malonic acid, sodium malonate and its compounds with some bivalent transition metal ions. Thermochimica Acta. 2010; 497: 35-40. https://doi.org/10.1016/j.tca.2009.08.013
Obi-Egbedi NO, Ojo ND. Synthesis, light harvesting efciency, photophysical and nonlinear optical properties of 3-(5-(4-hydroxybenzylideneamino) naphthalen-1-yliminomethyl)phenol: Spectroscopic and quantum chemical approach. Res Chem Inter. 2021; 47(12): 5249-5266. https://doi.org/10.1007/s11164-021-04579-4
Awolope RO, Ejidike IP, Clayton HS. Schiff base metal complexes as a dual antioxidant and antimicrobial agents. J App Pharma Sci. 2023; 13(3), 132-140. https://doi.org/10.7324/JAPS.2023.91056
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Safaa H. Ali, Saad S. Mohammed, Hadi T. Obaid, Sanjeewa Gamagedara
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.