Biosynthesis of silver nanoparticles by extracellular metabolites of marine Kocuria flava and investigated its role in enhancing of antibacterial activity of ciprofloxacin
DOI:
https://doi.org/10.21123/bsj.2024.9965Keywords:
دقائق الفضة النانوية، تعزيز نشاط المضاد الحيوي، Ciprofloxacin، Kocuria flava، البكتيريا المقاومة للمضادات الحيوية MDRAbstract
The current study aimed to biosynthesize silver nanoparticles (AgNPs) by extracellular metabolites of marine Kocuria flava, and characterization it, then use them to enhance the ciprofloxacin activity against MDR pathogenic bacteria. The seawater was collected from the Iraqi Marine Water in January 2022. The isolate K. flava (F57) was identified by morphological, some biochemical, and molecular identification by 16S rDNA amplification and sequencing. The identity (%) of the F57 16SrDNA gene with those in GenBank was 99.93%, and the phylogenetic tree showed high identity with K. flava strain AUMC B-459. GC/MS spectrometry of the F57 extract revealed the presence of thirty compounds. The extracellular metabolites of F57 are used to biosynthesize of AgNPs., and the production of AgNPs was verified by UV–Vis spectroscopy, FTIR- spectrum, XRD, FESEM, and EDX analysis. The antimicrobial activity of AgNPs was investigated against Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus haemolyticus, and two isolates of Escherichia coli (1&2), the results showed that AgNPs were effective against these pathogens. The minimal inhibitory concentration (MIC) of AgNPs, ciprofloxacin, and their combination was investigated against these MDR pathogens. The lowest MIC of AgNPs. was 7.81 µg/ml against P. aeruginosa. All pathogenic bacteria were resistant to ciprofloxacin. The combination of ciprofloxacin and AgNPs had a synergistic effect on P. aeruginosa, S. haemolyticus, and E. coli (2). The isolates E. coli (1&2) became sensitive to ciprofloxacin after being mixed with AgNPs. So, the biosynthesized AgNPs. by extracellular metabolites of marine K. flava had antimicrobial properties and contributed to enhancing the effectiveness of ciprofloxacin.
Received 16/10/2023
Revised 02/02/2024
Accepted 04/02/2024
Published Online First 20/08/2024
References
Adebayo-Tayo BC, Ekundayo-Obaba O, Falodun OI. Antimicrobial potential of bioactive metabolites and silver nanoparticles from bacillus spp. and of some antibiotics against multidrug-resistant salmonella spp. Turkish J Pharm Sci. 2020; 17(5): 511-522. https://doi.org/10.4274/tjps.galenos.2019.46548
2. Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F, Saturnino C, et al. Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules. 2022; 27(3): 616-634. https://doi.org/10.3390/molecules27030616
3. Singh AA, Singh AK, Nerurkar A. Bacteria associated with marine macroorganisms as potential source of quorum-sensing antagonists. J Basic Microbiol. 2020; 60(9): 799-808. https://doi.org/10.1002/jobm.202000231
4. Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019; 9(23): 12944-12967. https://doi.org/10.1039/c8ra10483b
5. Abbas AZ, Abdulrahman RB, Mustafa TA. Preparation and Characterization of Silver Nanoparticles and its Medical Application against Pathogenic Bacteria. Baghdad Sci J. 2024; 21(1): 204-216. https://doi.org/10.21123/bsj.2023.7763
6. Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005; 16: 1912–1917.https://doi.org/10.1088/0957-4484/16/9/082
7. Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, et al. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine. 2013; 8: 4277-90. https://doi.org/10.2147/IJN.S48913
8. Tharwat NA, Saleh NM, Hamouda RE, El Shreif RH, Elnagdy SM, Mohamed G. Combination of ciprofloxacin and silver nanoparticles for treatment of multi-drug resistant Pseudomonas aeruginosa in Egypt. Al-Azhar J Pharm Sci. 2019; 59(1): 107-122. https://doi.org/10.21608/ajps.2019.64110
9. Khalil MA, El Maghraby GM, Sonbol FI, Allam NG, Ateya PS, Ali SS. Enhanced efficacy of some antibiotics in presence of silver nanoparticles against multidrug resistant Pseudomonas aeruginosa recovered from burn wound infections. Front Microbiol. 2021; 12: 648560. https://doi.org/10.3389/fmicb.2021.648560
10. Khalil MA, El-Shanshoury AERR, Alghamdi MA, Sun J, Ali SS. Streptomyces catenulae as a Novel Marine Actinobacterium Mediated Silver Nanoparticles: Characterization, Biological Activities, and Proposed Mechanism of Antibacterial Action. Front Microbiol. 2022; 13: 833154. https://doi.org/10.3389/fmicb.2022.833154
11. Khalil MA, El-Shanshoury AER, Alghamdi MA, Alsalmi FA, Mohamed SF, Sun J, et al. Biosynthesis of Silver Nanoparticles by Marine Actinobacterium Nocardiopsis dassonvillei and Exploring Their Therapeutic Potentials. Front Microbiol. 2022; 12: 705673. https://doi.org/10.3389/fmicb.2021.705673
12. Haji SH, Ali FA, Aka STH. Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Sci Reports. 2022; 12(1): 15254. https://doi.org/10.1038/s41598-022-19698-0
Hasson SO, Salman SAK, Hassan SF, Abbas SM. Antimicrobial Effect of Eco-Friendly Silver Nanoparticles Synthesis by Iraqi Date Palm (Phoenix dactylifera) on Gram-Negative Biofilm-Forming Bacteria. Baghdad Sci J. 2021; 18(4): 1149-1156. https://doi.org/10.21123/bsj.2021.18.4.1149
14. Syakti AD, Lestari P, Simanora S, Sari LK, Lestari F, Idris F, et al. Culturable hydrocarbonoclastic marine bacterial isolates from Indonesian seawater in the Lombok Strait and Indian Ocean. Heliyon. 2019; 5(5): e01594. https://doi.org/10.1016/j.heliyon.2019.e01594
15. Amdadul Huq M, Akter S. Characterization and genome analysis of Arthrobacter bangladeshi sp. Nov., applied for the green synthesis of silver nanoparticles and their antibacterial efficacy against drug-resistant human pathogens. Pharmaceutics. 2021; 13(10). https://doi.org/10.3390/pharmaceutics13101691
16. Prescott H. Laboratory exercises in microbiology. 5th.Ed. McGraw−Hill Companies. New York, USA, 2002;449p.
17. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol. 1990; 28(9): 1942-1946. https://doi.org/10.1128/jcm.28.9.1942-1946.1990
18. Raji AI, Möller C, Litthauer D, van Heerden E, Piater LA. Bacterial diversity of biofilm samples from deep mines in South Africa. Biokemistri. 2008; 20(2): 53-62.
19. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021; 38(7): 3022-3027. https://doi.org/10.1093/molbev/msab120
20. Naveed M, Ishfaq H, Rehman SU, Javed A, Waseem M, Makhdoom SI, et al. GC–MS profiling of Bacillus spp. metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes. Front Chem. 2023; 11: 1-14. https://doi.org/10.3389/fchem.2023.1287599
Goel N, Ahmad R, Singh R, Sood S, Khare SK. Biologically synthesized silver nanoparticles by Streptomyces sp. EMB24 extracts used against the drug-resistant bacteria. Bioresour Technol Rep. 2021; 15(2): 100753. https://doi.org/10.1016/j.biteb.2021.100753
22. Perez C, Pauli M, Bazerque P. An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp. 1990; 15(1): 113-115. https://www.researchgate.net/publication/303960600
Bellio P, Fagnani L, Nazzicone L, Celenza G . New and simplified method for drug combination studies by checkerboard assay. MethodsX. 2021; 8: 101543. https://doi.org/10.1016/j.mex.2021.101543
24. Bayroodi E, Jalal R. Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles. Iran J Microbiol. 2016; 8(2): 85-92.
25. Fadwa AO, Alkoblan DK, Mateen A, Albarag AM. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J Biol Sci. 2021; 28(1): 928-935. https://doi.org/10.1016/j.sjbs.2020.09.064
26. Omer NH. Water Quality Parameters. In: Summers JK, ed. Water Quality - Science, Assessments and Policy. IntechOpen; 2020. https://doi.org/10.5772/intechopen.89657
Shareef NF, Mahdi MM. Studying of recent environments in Faw, Khor Al-Zubair and Um-Qaser areas, Southwestern Arabian Gulf, Basrah, Iraq. J Basrah Rese ((Sci)). 2015; 41(2): 1-14.
28. Jaafar RS, Al-Taee A, Al-Kanany FN. Bacterial Diversity in Different Positions in the Iraqi Marine Area. Baghdad Sci J. 2023; 20(1): 1-6. https://doi.org/10.21123/bsj.2022.6610
29. Aertsen A, Meersman F, Hendrick MEG, Vogel RF, Michiels CW. Biotechnology under high pressure: Applications and implications. Trends Biotechnol. 2009; 27: 434-441. https://doi.org/10.1016/j.tibtech.2009.04.001
30. Zhou G, Luo X, Tang Y, Zhang L, Yang Q. Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. Int J Syst Evol Microbiol. 2008; 1: 1304-1307. https://doi.org/10.1099/ijs.0.65323-0
31. Sun W, Liu C, Zhang F, Zhao M, Li Z. Comparative genomics provides insights into the marine adaptation in sponge-derived Kocuria flava S43. Front Microbiol. 2018; 9: 1257-1268. https://doi.org/10.3389/fmicb.2018.01257
32. Deutsch Y, Samara M, Nasser A, Berman-Frank I, Ezra D. Kocuria flava, a Bacterial Endophyte of the Marine Macroalga Bryopsis plumosa, Emits 8-Nonenoic Acid Which Inhibits the Aquaculture Pathogen Saprolegnia parasitica. Mar Drugs. 2023; 21(9): 476-488. https://doi.org/10.3390/md21090476
33. Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo[1,2-: A] pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 2018; 8(32): 17837-17846. https://doi.org/10.1039/C8RA00820E
34. Ser HL, Palanisamy UD, Yin WF, Abd Malek SN, Chan KG, Goh BH, et al. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp nov. Front Microbiol. 2015; 6: 854. https://doi.org/10.3389/fmicb.2015.00854
35. Raut LS, Rakh RR, Hamde VS. In vitro biocontrol scenarios of Bacillus amyloliquefaciens subsp. amyloliquefaciens strain rls19 in response to Alternaria macrospora, an Alternaria leaf spot phytopathogen of bt cotton. J Appl Biol Biotechnol. 2021; 9(1): 75-82. http://dx.doi.org/10.7324/JABB.2021.9110
36. Anwar S, Mahmood F, Tahir NA, Salih GF. Secondary Compounds Released By Rhizospheric Bacteria Exhibit Fungistatic Effects Against Phytopathogenic Fungus. Iraqi J Agric Sci. 2022; 53(5): 1174-1183. https://doi.org/10.36103/ijas.v53i5.1631
37. Manimaran M, Kannabiran K. Marine Streptomyces sp. VITMK1 derived Pyrrolo [1, 2-A] Pyrazine-1, 4-Dione, Hexahydro-3-(2-Methylpropyl) and its free radical scavenging activity. Open Bioact Compd J. 2017; 5(1): 23-30. http://dx.doi.org/10.2174/1874847301705010023
38. Carcamo-Noriega EN, Sathyamoorthi S, Banerjee S, Gnanamani E, Mendoza-Trujillo M, Mata-Espinosa D, et al. 1,4-Benzoquinone antimicrobial agents against Staphylococcus aureus and Mycobacterium tuberculosis derived from scorpion venom. Proc Natl Acad Sci U S A. 2019; 116(26): 12642-12647. https://doi.org/10.1073/pnas.1812334116
39. da Silva RE, Ribeiro FOS, de Carvalho AMA, Daboit TC, Marinho-Filho JDB, Matos TS, et al. Antimicrobial and antibiofilm activity of the benzoquinone oncocalyxone A. Microb Pathog. 2020; 149(September): 104513. https://doi.org/10.1016/j.micpath.2020.104513
40. Shanshoury AERE, Sabae SZ, Shouny WAE, Shady AMA, Badr HM. Extracellular biosynthesis of silver nanoparticles using aquatic bacterial isolate and its antibacterial and antioxidant potentials. Egypt J Aquat Biol Fish. 2020; 24(7 Special issue): 183-201. http://dx.doi.org/10.21608/EJABF.2020.119399
41. Al-Hayanni HSA, Alnuaimi MT, Al-Lami RAH, Zaboon SM. Antibacterial Effect of Silver Nanoparticles Prepared from Sophora flavescens Root Aqueous Extracts against Multidrug-resistance Pseudomonas aeruginosa and Staphylococcus aureus. J Pure Appl Microbiol. 2022; 16(4): 2880-2890. https://doi.org/10.22207/JPAM.16.4.61
42. Yassin MT, Mostafa AAF, Al-Askar AA, Al-Otibi FO. Synergistic Antibacterial Activity of Green Synthesized Silver Nanomaterials with Colistin Antibiotic against Multidrug-Resistant Bacterial Pathogens. Crystals. 2022; 12(8): 1057. https://doi.org/10.3390/cryst12081057
43. Alsamhary KI. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J Biol Sci. 2020; 27(8): 2185-2191. https://doi.org/10.1016/j.sjbs.2020.04.026
44. Naseer QA, Xue X, Wang X, Dang S, Din SU, Kalsoom Jamil J. Synthesis of silver nanoparticles using Lactobacillus bulgaricus and assessment of their antibacterial potential. Brazilian J Biol. 2022; 82: e232434. https://doi.org/10.1590/1519-6984.232434
45. Tufail MS, Liaqat I, Andleeb S, Naseem S, Zafar U, Sadiqa A, et al. Biogenic Synthesis, Characterization and Antibacterial Properties of Silver Nanoparticles against Human Pathogens. J Oleo Sci. 2022; 71(2): 257-265. https://doi.org/10.5650/jos.ess21291
46. Shareef AA, Farhan FJ, Alriyahee FAA. Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Typha domingensis Pers. Pollen (qurraid) and Evaluate its Antibacterial Activity. Baghdad Sci J. 2024; 21(1): 28-40. https://doi.org/10.21123/bsj.2023.7624
47. Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, et al. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials (Basel). 2022; 15(2): 1-43. https://doi.org/10.3390%2Fma15020427
48. Shareef AA, Hassan ZA, Kadhim MA, Al-Mussawi AA. Antibacterial activity of silver nanoparticles synthesized by aqueous extract of Carthamus oxycantha M.Bieb. Against antibiotics resistant bacteria. Baghdad Sci J. 2022; 19(3): 460-468. https://doi.org/10.21123/bsj.2022.19.3.0460
49. Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nanomicro Lett. 2020; 12(1): 45-79. https://doi.org/10.1007/s40820-020-0383-9
50. Qin W, Wang CY, Ma YX, Shen MJ, Li J, Jiao K, et al. Microbe-mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications. Adv Mater. 2020; 32(22): e1907833. https://doi.org/10.1002/adma.201907833
51. Singh S, Bharti A, Meena VK. Green synthesis of multi-shaped silver nanoparticles: optical, morphological and antibacterial properties. J Mater Sci: Mater Electron. 2015; 26(6): 3638-3648. http://dx.doi.org/10.1007/s10854-015-2881-y
52. Mohammad D, Al-Jubouri SHK. Comparative Antimicrobial Activity of Silver Nanoparticles Synthesized by Corynebacterium glutamicum and Plant Extracts. Baghdad Sci J. 2019; 16(3): 689-696. https://doi.org/10.21123/bsj.2019.16.3(Suppl.).0689
53. Sharma PC, Jain A, Jain S, Pahwa R, Yar MS. Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. J Enzyme Inhib Med Chem. 2010; 25(4): 577-589. https://doi.org/10.3109/14756360903373350
54. Hussein-Al-Ali SH, Abudoleh SM, Abualassal QIA, Abudayeh Z, Aldalahmah Y, Hussein MZ. Preparation and characterisation of ciprofloxacin-loaded silver nanoparticles for drug delivery. IET Nanobiotechnol. 2022; 16(3): 92-101. https://doi.org/10.1049/nbt2.12081
Downloads
Issue
Section
License
Copyright (c) 2024 Fadhil Jabbar Farhan, Ali Aboud Shareef
This work is licensed under a Creative Commons Attribution 4.0 International License.