مقارنة الخصائص الفيزيائية لدالة الكتلة والضيائية لأنظمة الأقراص في المجرات الحلزونية القضيبية وغير القضيبية

المؤلفون

  • Al Najm M.N. قسم الفلك والفضاء ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق. https://orcid.org/0000-0002-8486-5313
  • Y. E. Rashed قسم الفلك والفضاء ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق.
  • H. H. AL-Dahlaki قسم الفلك والفضاء ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق.

DOI:

https://doi.org/10.21123/bsj.2024.10452

الكلمات المفتاحية:

الكتلة الباريونية ، دالة الضيائية ، دالة الكتلة الاولية ، المجرات ذات النوع الحلزوني ، الغاز الذري والجزيئي.

الملخص

إحدى أهم الطرق لتقصي توزيع المجرات عبر الزمن الكوني هي دالة اللمعان LF بدلالة كتلة القرص الباريوني ψS(Mb)، القدر . لقد درسنا تقديرًا لكثافة كتلة الباريون في عينة من المجرات الحلزونية القضيبية وغير القضيبية من الادبيات السابقة، والتي تتضمن فعليًا، لكل صنف من الاجرام السماوية ذات المحتوى الباريون المرئي، جزءًا لا يتجزأ من ناتج دالة الضيائية (LF) ونسبة الكتلة إلى الضوء. استخدمت تقنية الانحدار المتعدد لحزمة البرامج الإحصائية في دراستنا ونتائجنا، مثل برنامج تحليل قواعد البيانات والرسوم البيانية)برامج Statistics Win و(Origin Pro . وفقًا للتحليل الإحصائي، هناك علاقة إيجابية قوية وارتباط وثيق للغاية (α MB~1),  ، وغالبًا ما تظهر المجرات الحلزونية القرصية القضيبية وغير القضيبية قدراً مطلقاً بحدود MB < -18 mag . "الركبة" لدالة الضيائية للمجرات الحلزونية تبين قطعًا كبيرًا عند كتلة باريونية تبلغ Mb > 1010 Mʘ للمجرات الحلزونية القضيبية وغير القضيبية. يوفر هذا دليلاً يدعم الفرضية القائلة بأن اللوالب الحلزونية لنظام القرص بدأت تتشكل داخل عتبة كتلة متزايدة. نظرًا لأن زيادة دالة الكتلة الأولية للنجم مع الانزياح نحو الأحمر تكون أسرع بكثير، فقد أشارت النتائج التي توصلنا إليها إلى أن دالة الكتلة الأولية المنتقلة ψS(Mb) للمجرات القضيبية وغير القضيبيةعند انزياح أحمر مرتفع z > 0.027 للمجرات االقضيبية وz > 0.02للمجرات غير القضيبية والذي يبدو أنه يتناقص مقارنة بالكون الحرج.

المراجع

Jesús FB, Johan HK. Secular Evolution of Galaxies. 2nd ed. New York: Cambridge University Press; 2013. 179. https://doi.org/10.1017/CBO9781139547420

Aleksandr VM, Andrey DP, Savanah T, Bartier CL, Maria NS, Alexander AM, et al. A multiwavelength study of spiral structure in galaxies. II. Spiral arms in deep optical observations. Mon Notices Royal Astron Soc. 2023; 527: 10615–10631. https://doi.org/10.1093/mnras/stad3869

Al-Ramahi FKM. Spatial analysis of radon gas concentration distrbuted at Baghdad city using remote sensing and geographic information system techniquesd. Iraqi J Agric Sci. 2020; 51: 21–32. https://doi.org/10.36103/ijas.v51iSpecial.879

Eskridge PB, Frogel JA, Pogge RW, Quillen AC, Davies RL, DePoy DL, et al. The Frequency of Barred Spiral Galaxies in the Near-Infrared. Astron J. 2000; 119(2): 536-544. https://doi.org/10.1086/301203

Raaid NH, Huda ShA, Wafaa HW. Computer Simulation for the Effects of Optical Aberrations on Solar Images Using Karhunen-Loeve polynomials. Iraqi J Sci. 2021; 62(7): 2463-2473. https://doi.org/10.24996/ijs.2021.62.7.35

Ramin AS, Karen LM, Robert CN, Idit Z, Ben H, Edward ME, et al. Galaxy Zoo: the environmental dependence of bars and bulges in disc galaxies Mon Notices Royal Astron Soc. 2012; 423: 1485–1502. https://doi.org/10.1111/j.1365-2966.2012.20972.x

Abdullah KA. Comparison of the Structure of Spiral and Lenticular Galaxies, NGC 4305 and NGC 4203 as a Sample. Iraqi J Sci. 2023; 64(4): 2051–2059. https://doi.org/10.24996/ijs.2023.64.4.39

Ahmed HA, Pavel K. Specific Frequency of Globular Clusters in Different Galaxy Types. Int J Phys Math Sci. 2018; 12(9): 190-195. https://doi.org/10.5281/zenodo.1474591

Andreani P, Miyamoto Y, Kaneko H, Boselli A, Tatematsu K, Sorai K, et al. The molecular mass function of the local Universe. Astron. Astrophys. 2020; 643: L11. https://doi.org/10.1051/0004-6361/202038675

Johnston R. Shedding light on the galaxy luminosity function. Astron Astrophys Rev. 2011; 19: article id.41. https://doi.org/10.1007/s00159-011-0041-9

Al Najm MN, Polikarpova OL, Shchekinov YuA. Ionized Gas in the Circumgalactic Vicinity of the M81 Galaxy Group. Astron Rep. 2016; 60(4): 389-396. https://doi.org/10.1134/S106377291603001X

Rashed YE, Al Najm MN, Al Dahlaki HH. Studying the Flux Density of Bright Active Galaxies at Different Spectral Bands. Baghdad Sci J. 2019; 16(1) Supplement: 30-236. https://dx.doi.org/10.21123/bsj.2019.16.1

Al Najm MN, Mahdi HS, Abdullah SA. The Exponential and Gaussian Density Profiles of HI and Fe II in the Gaseous Halo of the Milky Way. Iraqi J Sci. 2017; 58(4C): 2467-2472. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/98

Maha AH, Saif BAl-Khoja, Rafah RI. Small Binary Codebook design depending on Rotating Blocks. Iraqi J Sci. 2021; 62(10): 3719-3723. https://doi.org/10.24996/ijs.2021.62.10.30

Salucci P, Persic M. The baryonic mass function of spiral galaxies: clues to galaxy formation. Mon Notices Royal Astron Soc. 1999; 309: 923 -928. https://doi.org/10.1046/j.1365-8711.1999.02913.x

Shankar F, Salucci P, Danese L. The Baryonic vs Dark Matter Halo Mass Relationship in Galaxies: the effect of the inefficiency of the Cosmolog. star formation. PoS Proc Sci. 2004 ; 14: id 59. https://doi.org/10.22323/1.014.0059

Read JI, Neil T. The baryonic mass function of galaxies. Phil Trans R Soc A. 2005; 363(1837): 2693–2710. https://doi.org/10.1098/rsta.2005.1648

Kevin RC, Suzanne LH, John JB, Andrew AW, Reid IN, David AG, et al. The Luminosity and Mass Functions of Low-Mass Stars in the Galactic Disk. I. The calibration region. Astron J. 2008; 136: 1778–1798, https://doi.org/10.1088/0004-6256/136/5/1778

Trachternach C, de Blok WJG., McGaugh SS, van der Hulst JM, Dettmar RJ. The baryonic Tully-Fisher relation and its implication for dark matter halos. Astron Astro phys. 2009; 505: 577–587. https://doi.org/10.1051/0004-6361/200811136

Amanda RL, Alvaro I, Marcelo BR, William RS. Galaxy cosmological mass function Galaxy cosmological mass function. Astron Astrophys. 2014; 572: A27. https://doi.org/10.1051/0004-6361/201423445

Hunt LR, Pisano DJ, Crawford SM, Bershady MA, Wirth GD. The Evolution of the Luminosity Function for Luminous Compact Blue Galaxies to z=1. Astrophys J. 2021; 909: 49 (12pp). https://doi.org/10.3847/1538-4357/abda4c

Steer I, Madore BF, Mazzarella JM, Schmitz M, Corwin HG, Chan BHP, et al. Redshift-Independent Distances in the NASA/IPAC Extragalactic Database: Methodology, Content, and Use of NED-D. Astron J. 2017; 153(1): article id. 37. https://doi.org/10.3847/1538-3881/153/1/37

Ahmed HA, Pavel K. The Dichotomy of the Mass-radius Relation and the Number of Globular Clusters. Astron Lett. 2021; 47: 170–174. https://doi.org/10.1134/S1063773721030014

Al-baqir HR, Abdullah KA, Gamal D. Surface Photometry of NGC 3 Lenticular Galaxy. Iraqi J Sci. 2019; 60(9): 2080–2086. https://doi.org/10.24996/ijs.2019.60.9.23

Dmitry M, Philippe P, Nataliya T, Hélène C, Isabelle V. HyperLEDA. III. The catalogue of extragalactic distances. Astron Astrophys. 2014; 570: A13. https://doi.org/10.1051/0004-6361/201423496

Maha MZ, Al Najm MN. Computation of the Relationships of X-ray to Radio Luminosities of a Sample of Starburst Galaxies. Iraqi J Sci. 2023; 64(6): 4076-4093. https://doi.org/10.24996/ijs.2023.64.6.44

Al Najm MN, AL-Dahlaki HH, Alkotbe BA. Investigation of the Baryonic Mass Tully–Fisher Relationship for Normal and Barred Spiral Galaxies. Iraqi J Sci. 2023; 64(12): 6620-6637. https://doi.org/10.24996/ijs.2023.64.12.41

Rasha HI, Abdul-Rahman HS. A comparison between Runge-Kutta and Adems-Bashforth methods for determining the stability of the satellite's orbit. AIP Conf Proc. 2020; 2290(1). https://doi.org/10.1063/5.0027420

Albakri SAA, Abdul Hussien MN, Herdan H. Measurement of the distance to the central stars of Nebulae by using Expansion methods with Alladin Sky Atlas. IOP Conf Ser Mater Sci Eng. 2020; 757. https://doi.org/10.1088/1757-899X/757/1/012043

Rashed YE, Eckart A, Valencia MS., García-Marín M, Busch G, Zuther J, et al. Line and continuum variability in active galaxies. Mon Notices Royal Astron Soc. 2015; 454 (3): 2918–2945. https://doi.org/10.1093/mnras/stv2066

Zahraa A, Abdullah KA. Surface Photometry of Spiral Galaxy NGC 5005 and Elliptical Galaxy NGC 4278. Baghdad Sci. J. 2018; 15(3): 314-323. https://doi.org/10.21123/bsj.2018.15.3.0314

Massimo P, Paolo S. The baryon content of the Universe. Mon Notices Royal Astron Soc. 1992 Sep 01; 258: 14-18. https://doi.org/10.1093/mnras/258.1.14P

Schneider P. Extragalactic Astronomy and Cosmology an Introduction. Second Edition. New York: Springer Berlin Heidelberg; 2015. 155p. https://doi:10.1007/978-3-642-54083-7

Favole G, Gonzalez-Perez V, Ascasibar Y, Corcho-Caballero P, Montero-Dorta AD, Benson AJ, et al., Characterizing the ELG luminosity functions in the nearby Universe. arXiv: 2303.11031. astro-ph. GA. https://doi.org/10.48550/arXiv.2303.11031

Ryou Oh, Takashi O, Chikako Y. Impact of the initial disk mass function on the disk fraction. Publ Astron Soc Jpn. 2015; 67 (6): 120 (1–9). https://doi.org/10.1093/pasj/psv094

McGaugh SS, Schombert JM, Bothun GD, de Blok WJG. The Baryonic Tully-Fisher Relation. Astrophys J. 2000; 533: L99–L102. https://doi.org/10.1086/312628

Federico L, McGaugh SS, Schombert JM. The Small Scatter of the Baryonic Tully–Fisher Relation. Astrophys J Lett. 2016; 816: L14 (6pp). https://doi.org/10.3847/2041-8205/816/1/L14

McGaugh SS, Schombert JM. Weighing Galaxy Disks with the Baryonic Tully–Fisher Relation. Astrophys J. 2015; 802:18 (16pp). https://doi.org/10.1088/0004-637X/802/1/18

Dua’a KA, Al Najm MN. Investigation of the Characteristics of CO (1-0) Line Integrated Emission Intensity in Extragalactic Spirals. Iraqi J Sci. 2022; 63(3): 1376–1393. https://doi.org/10.24996/ijs.2022.63.3.39

Andreas S, Adam KL, Fabian W, Frank B, Elias B, de Blok WJG, et al. Low CO Luminosities in Dwarf Galaxies. Astron J. 2012; 143: 138 (18pp). https://doi.org/10.1088/0004-6256/143/6/138

Julian SG, David VS, Karen LM, Kevin B, Niv D, David RL. A comparison of the baryonic Tully–Fisher relation in MaNGA and IllustrisTNG. Mon Notices Royal Astron Soc. April 2023 Feb 02; 520(3): 3895–3908. https://doi.org/10.1093/mnras/stad298

Meza A, Lipovka AA. Modeling the Rotation Curve of Disk Galaxies. Astrophys Bull. 2022; 77(2): 123-131. https://doi.org/10.1134/S1990341322020055

Kenji B. A mechanism of bar formation in disc galaxies: Synchronization of apsidal precession. Mon Notices Royal Astron Soc. 2023; 523(4): 5823–5840. https://doi.org/10.1093/mnras/stac3097

Xingchen L, Isaac Sh, Daniel P, Clayton H. The origin of buckling instability in galactic bars: Searching for the scapegoat. Mon Notices Royal Astron Soc.2023; 520(1): 1243–1257. https://doi.org/10.1093/mnras/stad076

McGaugh SS. The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies. Astrophys J. 2005; 632: 859–871. https://doi.org/10.1086/432968

Federico L. Gas dynamics in dwarf galaxies as testbeds for dark matter and galaxy evolution. Nature Astron. 2022; 6: 35–47. https://doi.org/10.1038/s41550-021-01562-2

Justin HR, Misty CB, Hélène MC, Megan CJ, Crenshaw DM, Beena M, et al. Tully–Fisher Distances and Dynamical Mass Constraints for 24 Host Galaxies of Reverberation-mapped AGNs. Astrophys J. 2021; 912 (2): 160. https://doi.org/10.3847/1538-4357/abedaa

Martin M, Aaron R, Danail O, Tobias W, Alan D, Lister SS. Tracing HI Beyond the Local Universe. Publ Astron Soc Aust. 2017; 34(52): 12pages. https://doi.org/10.1017/pasa.2017.31

Al Najm MN. Studying the Atomic and Molecular Hydrogen Mass (MHI, MH2) Properties of the Extragalactic Spectra. Iraqi J Sci. 2020; 61(5): 1233-1243. https://doi.org/10.24996/ijs.2020.61.5.30

Herrero-Illana R, Privon GC, Evans AS, Díaz-Santos T, Pérez-Torres MÁ, Vivian U, et al. Molecular gas and dust properties of galaxies from the Great Observatories All-sky LIRG Survey. Astron Astro phys. 2019; 628: A71. https://doi.org/10.1051/0004-6361/201834088

Hiroyuki K, Shoya T, Nario K. Investigating physical states of molecular gas in the overlapping region of interacting galaxies NGC 4567/4568 using ALMA. Publ Astron Soc Jpn. 2023; 75(3): 646–659. https://doi.org/10.1093/pasj/psad025

Bradley WC, Dale AO. An Introduction to Modern Astrophysics. 2nd ed. Pearson Education; Inc., Addison-Wesley: 2007. 973p. https://doi.org/10.1017/9781108380980

التنزيلات

منشور

2024-10-01

إصدار

القسم

article

كيفية الاقتباس

1.
مقارنة الخصائص الفيزيائية لدالة الكتلة والضيائية لأنظمة الأقراص في المجرات الحلزونية القضيبية وغير القضيبية. Baghdad Sci.J [انترنت]. 1 أكتوبر، 2024 [وثق 16 نوفمبر، 2024];21(10):3277. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10452

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.