دراسة العلاقة بين سمك القشرة النيوتروني والبروتوني على معادلة الحالة النيوترونية لزوج النوى المرآتية Ne -18O 18
DOI:
https://doi.org/10.21123/bsj.2024.10512الكلمات المفتاحية:
أزاحه طاقة النوى المراتية، أعداد الأشغال، زوج النوى المراتية، معامل الانحدار، طاقة التناظرالملخص
في إطار نموذج القشرة، تم اعتماد الدوال الموجية أحادية الجسيم لتقريب هاتري - فوك مع تفاعلات سكيرم مثل Skxtb, Skxs25, , Sly4وBsk9 لحساب سمك القشرة النيوتروني، ونصف قطر المرآتي ونصف قطر الشحنة المرآتية ، لزوج النوى المرآتية 18Ne-18O. تم حساب الدوال الموجية باستخدام كود نموذج القشرة NuShellX@MSU. تتأثر القيم المحسوبة لجذر متوسط نصف القطر المربع بنوع التفاعلات المستخدمة. كما تم تحديد طاقة التناظر وانحدارها عند كثافة التشبع النووي وازاحة طاقة النوى المراتية. تم إجراء مقارنات بين البيانات النظرية والتجريبية وتم التوصل إلى أن البيانات موصوفة بشكل جيد لهذا الزوج من النواة المرآتية.
Received 26/12/2023
Revised 23/02/2024
Accepted 25/02/2024
Published Online First 20/07/2024
المراجع
Hameed BS, Alwan TA. Study the Nuclear Structure of Some Even-Even Ca Isotopes Using the Microscopic Theory. Baghdad Sci J. 2023; 20(1): 235-244.(10). https://dx.doi.org/10.21123/bsj.2022.6924.
Guan D, Pei J, Jiang C. Implications on Skyrme equations of state from neutron skin measurements. Chin. Phys. C. 2024; 48(6):0641055.
https://doi.org/10.48048/tis.2022.4169.
Hameed BS, Rejah BK. Study the Nuclear Structure of Some Cobalt Isotopes. Baghdad Sci J. 2022; 19(6): 1566. https://dx.doi.org/10.21123/bsj.2022.
Hussein AAM, Flaiyh GN. Theoretical Study of Matter Density Distributions, and Elastic Electron Scattering Form Factors of Exotic Nuclei (26F and 9C). East Eur J Phys. 2023(1): 82-88. https://doi.org/10.26565/2312-4334-2023-1-09.
Raheem S K, Dakhil Z A , Hameed B S. Effect of the Exact Center of Mass Correction on the Longitudinal Form Factors for Neutron Rich 12,14,18N Isotopes. J. Phys.: Conf. Ser., 2021; 1829(1): 012023. https://doi.org/10.1088/1742-6596/1829/1/012023.
Coraggio L, De Gregorio G, Gargano A, Itaco N, Fukui T, Ma YZ, et al. Shell-model study of calcium isotopes toward their dripline. Phys Rev C. 2020; 102(5): 054326.(9). https://doi.org/10.1103/PhysRevC.102.054326.
Reinhard P G, Nazarewicz W. Information content of the differences in the charge radii of mirror nuclei. Phys Rev C. 2022; 105(2): 7.https://dx.doi.org/10.1103/PhysRevC.105.L021301.
Pineda SV. Constraints on the Neutron Equation of State Using the Difference in 54 Ni-54 Fe Mirror Pair Charge Radii: Michigan State University. Phd thesis .2022;24.
An R, Sun S, Cao L-G, Zhang F-S. Constraining the nuclear symmetry energy with charge radii of the mirror pairs nuclei. Nucl Sci Tech. 2023; 34: 119. https://doi.org/10.1007/s41365-023-01269-1.
Mohammed RA, Majeed WZ. Exotic Structure of 17Ne-17N and 23Al-23Ne Mirror Nuclei. East Eur J Phys. 2022; 4 : 72-9.8. https://doi.org/10.26565/2312-4334-2022-4-05.
Brown BA, Minamisono K, Piekarewicz J , Hergert H, Garand D, Klose A, et al. Implications of the36Ca−36S and 38Ca−38Ar difference in mirror charge radii on the neutron mattere quation of state. Phys Rev Res. 2020; 2: 022035(R). https://doi.org/10.1103/PhysRevResearch.2.022035.
Naito T, Roca-Maza X, Colo G, Liang H, Sagawa H. Isospin symmetry breaking in the charge radius difference of mirror nuclei. Phys Rev C. 2022; 106: L061306. https://doi.org/10.1103/PhysRevC.106.L061306.
Brown BA, Radhi R, Wildenthal B H. Electric quadrupole and hexadecupole nuclear excitations from the perspective of electron scattering and modern shell- model theory. Phys Rep. 1983;101 (5):313. https://doi.org/10.1016/0370-1573(83)90001-7
Brown BA, Rae W. The shell-model code NuShellX@ MSU. Nucl Data Sheets. 2014; 120: 115-118. https://doi.org/10.1016/j.nds.2014.07.022
Abdulhasan AA, Dakhil ZA. Electric quadrupole transition in neutron rich 32−42S-isotopes with different model. Int J Nonlinear Anal Appl. 2022; 13: 3127–3137. https://doi.org/10.22075/IJNAA.2022.6783.
Yao Xua J, Zheng Li Z, Hua Suna B, Fei Niu Y, Roca- Mazac X, Sagawad H, et al. Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei. Phys Lett B. 2022; 833: 137333. https://doi.org/10.1016/j.physletb.2022.137333
Kumar P, Bishakha NT, Thakur V, Kumar R, Dhiman SK, editors. A study of trends of neutron skin thickness and proton radii of mirror nuclei. Proceedings of the DAE Symp. On Nucl Phys. 2022; 2:300-301.
Chen L-W, Ko CM, Li B-A. Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys Rev Lett. 2005; 94: 032701. https://doi.org/10.1103/PhysRevLett.94.032701
Bentley MA. Excited States in Isobaric Multiplets-Experimental Advances and the Shell-Model Approach. Physics. 2022; 4(3): 995-1011; https://doi.org/10.3390/physics4030066.
Brown B, Duguet T, Otsuka T, Abe D, Suzuki T. Tensor interaction contributions to single-particle energies. Phys Rev C. 2006; 74(6): 061303. https://doi.org/10.1103/PhysRevC.74.061303
Brown BA, Shen G, Hillhouse G, Meng J, Trzcińska A. Neutron skin deduced from antiprotonic atom data. Phys. Rev C. 2007; 76(3): 034305. https://doi.org/10.1103/PhysRevC.76.034305
Chabanat E, Bonche P, Haensel P, Meyer J, Schaeffer R. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl Phys A. 1998; 635(1-2): 231-56. https://doi.org/10.1016/S0375-9474(98)00180-8
Goriely S, Samyn M, Pearson J, Onsi M. Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas.IV:Neutron-matterconstraint. Nucl Phys A. 2005; 750(2-4): 425-43. https://doi.org/10.1016/j.nuclphysa.2005.01.009.
Geng J, Xiang J, Sun BY, Long WH. Relativistic Hartree-Fock model for axially deformed nuclei. Phys Rev C. 2020; 101(6): 064302. https://doi.org/10.1103/PhysRevC.101.064302.
Ma H-L, Dong B-G, Yan Y-L, Zhang H-Q, Zhang X-Z. Proton Pygmy Dipole Resonances in 17,18Ne: Collective non collective excitations. Phys Rev C. 2012; 85: 044307. https://doi.org/10.1103/PhysRevC.85.044307.
Angeli I, Marinova KP. Table of experimental nuclear ground state charge radii: An update. At Data Nucl Data Tables. 2013; 99(1): 69-95. https://doi.org/10.1016/j.adt.2011.12.006
Ozawa A, Baumann T, Chulkov L, Cortina D, Datta U, Fernandez J, et al. Measurements of the interaction cross sectionsfor ArandCl isotopes. Nucl Phys A. 2002; 709 (1-4): 60-72. https://doi.org/10.1016/S0375-9474(02)01071-0.
Punta P, Lay J A, Moro A M. Transfer reactions of exotic nuclei including core deformations: 11Be and 17C. Phys Rev C. 2023; 108: 024613. https://doi.org/10.1103/PhysRevC.108.024613.
Hussein AAM, Flaiyh GN. Theoretical Study of Proton Halo Structure and Elastic Electron Scattering Form Factor for 23Al and 27P Nuclei by Using Full Correlation Functions (Tensor Force and Short Range). East Eur J Phys. 2023; 1: 75-8. https://doi.org/10.26565/2312-4334-2023-1-08.
Gaidarov M, Moumene I, Antonov A, Kadrev D, Sarriguren P, de Guerra EM. Proton and neutron skins and symmetry energy of mirror nuclei. Nucl Phys A. 2020; 1004: 122061. https://doi.org/10.1016/j.nuclphysa.2020.122061.
Reed BT, Fattoyev FJ, Horowitz CJ, Piekarewicz J. Implications of PREX-2 on the equation of state of neutron-rich matter. Phys Rev Lett. 2021; 126; 1-17: 172503.https://doi.org/10.1103/PhysRevLett.126.172503.
Harith RH, Hameed BS. Study of the Symmetry Energy and the Nuclear Equation of State for 13O -13B and 13N-13C Mirror Nuclei. Iraqi J phys. 2023; 21: 24-31. https://doi.org/1030723/ijp.v21i4.1147.
Wang M, Huang WJ, Kondev FG, Audi G, Naimi S. The Ame2020 atomic mass evaluation (II). Tables, graphs and references. Chin Phys C. 2021; 45: 030003. https://doi.org/10.1088/1674-1137/abddaf.
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Sala Sami Hamza, Ban Sabah Hameed
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.