خوارزمية جديدة لإيجاد حل أولي أساسي وممكن لمشكلة النقل الكروي الضبابي مع تطبيقات
DOI:
https://doi.org/10.21123/bsj.2024.11263الكلمات المفتاحية:
الكلمات المفتاحية: الحل الأساسي الأولي الممكن، طريقة MODI، المجموعات الغامضة الكروية، مشكلة النقل الكروية الغامضة، مشكلة النقل.الملخص
في بحوث العمليات، هناك منطقة معينة يتم تحليلها بعمق كبير وهي مشكلة النقل (TP). الهدف الرئيسي لهذه المشكلة هو العثور على أقل تكاليف نقل إجمالية للسلع لتلبية متطلبات المستهلك في الوجهات التي تتضمن الموارد المكتسبة في نقاطها الأصلية. في هذا العمل، تحدد مشكلة النقل الضبابي الكروي (SFTP) أقل تكلفة لنقل العناصر من الأصل إلى الوجهة. وفي معظم الأحيان، يتم استخدام بيانات دقيقة، ولكن هذه المتغيرات في الواقع غير دقيقة وغامضة. وفقا للمصادر، تم اقتراح وحساب العديد من التعميمات والتوسعات للمجموعات الضبابية. واحدة من أحدث الابتكارات في المجموعات الضبابية هي المجموعات الكروية الضبابية (SFSs)، والتي تميز ليس فقط درجات العضوية وغير العضوية ولكن أيضًا الدرجات المحايدة. في هذه الدراسة، تم تطوير نهج جديد لاستخلاص الحل الأساسي الأولي الممكن (IBFS) لكل من الأشكال الثلاثة لـ SFTP، ومن ثم الحصول على الإجابة المثلى من خلال تطبيق تقنية التوزيع المعدل (MODI). بالنسبة لمثل هذه الأطر، يتم توضيح النهج المقترح من خلال الأمثلة العددية. في النهاية تم إعطاء الاستنتاج والمقترحات للعمل المستقبلي.
Received 26/03/2024
Revised 21/06/2024
Accepted 23/06/2024
Published Online First 20/12/2024
المراجع
Bera RK, Mondal SK. Analyzing a Two-Staged Multi-Objective Transportation Problem Under Quantity Dependent Credit Period Policy Using q-Fuzzy Number. Int J Appl Comput Math. 2020; 6: 1-33. https://doi.org/10.1007/s40819-020-00901-7.
Hemalatha K, Venkateswarlu B. Pythagorean Fuzzy Transportation Problem: New Way of Ranking for Pythagorean Fuzzy Sets and Mean Square Approach. Heliyon. 2023; 9(10): 1-11. https://doi.org/10.1016/j.heliyon.2023.e20775.
Zadeh LA. Fuzzy Sets. Inf control. 1965; 8(3): 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X. Atanassov KT. Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1986; 20(1): 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3 .
Chanas S, Kołodziejczyk W, Machaj A. A Fuzzy Approach to the Transportation Problem. Fuzzy Sets Syst. 1984; 13(3): 211-221. https://doi.org/10.1016/0165-0114(84)90057-5 .
Das KN, Das R, Acharjya DP. Least-Looping Stepping-Stone-Based ASM Approach for Transportation and Triangular Intuitionistic Fuzzy Transportation Problems. Complex Intell Syst. 2021; 7: 2885-2894. https://doi.org/10.1007/s40747-021-00472-0.
El Sayed MA, Abo-Sinna MA. A Novel Approach for Fully Intuitionistic Fuzzy Multi-Objective Fractional Transportation Problem. Alex Eng J. 2021; 60(1): 1447-1463. https://doi.org/10.1016/j.aej.2020.10.063 .
Radhy ZH, Maghool FH, Kamal N. Fuzzy-Assignment Model by Using Linguistic Variables. Baghdad Sci J. 2021; 18(3): 539-542. http://dx.doi.org/10.21123/bsj.2021.18.3.0539.
Bagheri M, Ebrahimnejad A, Razavyan S, Lotfi FH, Malekmohammadi N. Fuzzy Arithmetic DEA Approach for Fuzzy Multi-Objective Transportation Problem. Oper Res Int J. 2022; 22: 1479-1509. https://doi.org/10.1007/s12351-020-00592-4.
Bharati SK, Singh SR. Transportation Problem Under Interval-Valued Intuitionistic Fuzzy Environment. Int J Fuzzy Syst. 2018; 20: 1511-1522. https://doi.org/10.1007/s40815-018-0470-y.
Anukokila P, Radhakrishnan B. Goal Programming Approach to Fully Fuzzy Fractional Transportation Problem. J Taibah Univ SCI. 2019; 13(1): 864-874. https://doi.org/10.1080/16583655.2019.1651520.
Gupta S, Ali I, Ahmed A. Efficient Fuzzy Goal Programming Model for Multi-Objective Production Distribution Problem. Int J Appl Comput Math. 2018; 4: 1-19. https://doi.org/10.1007/s40819-018-0511-0.
Kamini, Sharma MK. Zero-Point Maximum Allocation Method for Solving Intuitionistic Fuzzy Transportation Problem. Int J Appl Comput Math. 2020; 6: 1-11. https://doi.org/10.1007/s40819-020-00867-6
Maheswari PU, Ragavendirane MS, Ganesan K. A Max-Min Average Method for Solving Fuzzy Transportation Problems with Mixed Constraints Involving Generalized Trapezoidal Fuzzy Numbers. 2nd International Conference on Mathematical Techniques and Applications: ICMTA 2021, 24–26 March 2021, Kattankulathur, India. AIP Conf Proc. Nov 2022; 2516(1). https://doi.org/10.1063/5.0108900.
Dhanasekar S, Hariharan S, Gururaj DM. Fuzzy Zero Suffix Algorithm to Solve Fully Fuzzy Transportation Problems by Using Element-Wise Operations. Ital J Pure Appl Math. 2020; (43): 256-267.
Wang K, Wang Y, Yang Y, Goh M. A Note on Two-Stage Fuzzy Location Problems Under VaR Criterion with Irregular Fuzzy Variables. IEEE Access. 2020; 8: 110306-110315. https://doi.org/10.1109/ACCESS.2020.3001589 .
Pratihar J, Kumar R, Edalatpanah SA, Dey A. Modified Vogel’s Approximation Method for Transportation Problem Under Uncertain Environment. Complex Intell Syst. 2021; 7(1): 29-40. https://doi.org/10.1007/s40747-020-00153-4.
Buvaneshwari TK, Anuradha D. Solving Stochastic Fuzzy Transportation Problem with Mixed Constraints Using the Weibull Distribution. J Math. 2022; 2022(1): 1-11. https://doi.org/10.1155/2022/6892342.
Juman ZAMS, Mostafa SA, Batuwita AP, AlArjani A, Sharif Uddin M, Jaber MM, et al. Close Interval Approximation Pentagonal Fuzzy Numbers for Interval Data-Based Transportation Problems. Sustainability. 2022; 14(12): 7423. https://doi.org/10.3390/su14127423.
Bisht DCS, Srivastava PK. Trisectional Fuzzy Trapezoidal Approach to Optimize Interval Data Based Transportation Problem. J King Saud Univ Sci. 2020; 32(1): 195-199. https://doi.org/10.1016/j.jksus.2018.04.013 .
Chhibber D, Bisht DCS, Srivastava, PK. Pareto-Optimal Solution for Fixed-Charge Solid Transportation Problem under Intuitionistic Fuzzy Environment. Appl Soft Comput. 2021; 107: 107368. https://doi.org/10.1016/j.asoc.2021.107368 .
Aktar MS, De M, Maity S, Mazumder SK, Maiti M. Green 4D Transportation Problems with Breakable Incompatible Items under Type-2 Fuzzy-Random Environment. J Clean Prod. 2020; 275: 122376. https://doi.org/10.1016/j.jclepro.2020.122376.
Singh G, Singh A. Extension of Particle Swarm Optimization Algorithm for Solving Transportation Problem in Fuzzy Environment. Appl Soft Comput. 2021; 110: 107619. https://doi.org/10.1016/j.asoc.2021.107619 .
Kacher Y, Singh P. Fuzzy Harmonic Mean Technique for Solving Fully Fuzzy Multi-Objective Transportation Problem. J Comput Sci. 2022; 63: 101782. https://doi.org/10.1016/j.jocs.2022.101782 .
Mohammed RT, Yaakob R, Sharef NM, Abdullah R. Unifying The Evaluation Criteria Of Many Objectives Optimization Using Fuzzy Delphi Method. Baghdad Sci J. 2021; 18(4(Suppl.)): 1423-1430. https://dx.doi.org/10.21123/bsj.2021.18.4(Suppl.).1423.
Mehmood MA, Bashir S. Extended Transportation Models Based on Picture Fuzzy Sets. Math Probl Eng. 2022; 2022(1): 1-21. https://doi.org/10.1155/2022/6518976.
Yager RR. Pythagorean Fuzzy Subsets. IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 24-28 June, Edmonton, AB, Canada. IEEE. 2013; 57-61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 .
Firozja MA, Agheli B, Jamkhaneh EB. A New Similarity Measure for Pythagorean Fuzzy Sets. Complex Intell. Syst. 2020; 6(1): 67-74. https://doi.org/10.1007/s40747-019-0114-3.
Kumar R, Edalatpanah SA, Jha S, Singh R. A Pythagorean Fuzzy Approach to the Transportation Problem. Complex Intell Syst. 2019; 5(2): 255-263. https://doi.org/10.1007/s40747-019-0108-1.
Cuong BC. Picture Fuzzy Sets. J Comput Sci Cybern. 2014 Dec; 30(4): 409-420. https://doi.org/10.15625/1813-9663/30/4/5032 .
Kumar S, Arya V, Kumar S, Dahiya A. A New Picture Fuzzy Entropy and Its Application Based on Combined Picture Fuzzy Methodology with Partial Weight Information. Int J Fuzzy Syst. 2022; 24(7): 3208-3225. https://doi.org/10.1007/s40815-022-01332-w.
Ashraf S, Abdullah S, Aslam M, Qiyas M, Kutbi MA. Spherical Fuzzy Sets and its Representation of Spherical Fuzzy t-Norms and t-Conorms. J Intell Fuzzy Syst. 2019; 36(6): 6089-6102. https://doi.org/10.3233/JIFS-181941 .
Ashraf S, Abdullah S, Mahmood T, Ghani F, Mahmood T. Spherical Fuzzy Sets and Their Applications in Multi-Attribut Decision Making Problems. J ntell Fuzzy Syst. 2019; 36(3): 2829-2844. https://doi.org/10.3233/JIFS-172009 .
Akram M, Alsulami S, Khan A, Karaaslan F. Multi-Criteria Group Decision-Making Using Spherical Fuzzy Prioritized Weighted Aggregation Operators. Int J Comput Intell. 2020; 13(1): 1429-1446. https://doi.org/10.2991/ijcis.d.200908.001.
Garg H, Sharaf IM. A New Spherical Aggregation Function with the Concept of Spherical Fuzzy Difference for Spherical Fuzzy EDAS and its Application to Industrial Robot Selection. Comput Appl Math. 2022; 41(5): 1-26. https://doi.org/10.1007/s40314-022-01903-5 .
Akram M, Zahid K, Kahraman C. Integrated Outranking Techniques Based on Spherical Fuzzy Information for the Digitalization of Transportation System. Appl Soft Comput. 2023; 134: 109992. https://doi.org/10.1016/j.asoc.2023.109992.
Mathew M, Chakrabortty RK, Ryan MJ. A Novel Approach Integrating AHP and TOPSIS under Spherical Fuzzy Sets for Advanced Manufacturing System Selection. Eng Appl Artif Intell. 2020; 96: 103988. https://doi.org/10.1016/j.engappai.2020.103988 .
Donyatalab Y, Seyfi-Shishavan SA, Farrokhizadeh E, Kutlu Gündoğdu F, Kahraman C. Spherical Fuzzy Linear Assignment Method for Multiple Criteria Group Decision-Making Problems. Informatica. 2020; 31(4): 707-722. https://doi.org/10.15388/20-INFOR433 .
Sarucan A, Baysal ME, Engin O. A Spherical Fuzzy TOPSIS Method for Solving the Physician Selection Problem. J Intell Fuzzy Syst. 2022; 42(1): 181-194. https://doi.org/10.3233/JIFS-219185.
Ajay D, Selvachandran G, Aldring J, Thong PH, Son LH, Cuong BC. Einstein Exponential Operation Laws of Spherical Fuzzy Sets and Aggregation Operators in Decision Making. Multimed Tools Appl. 2023; 82: 41767–41790. https://doi.org/10.1007/s11042-023-14532-9.
Wei G, Wang J, Lu M, Wu J, Wei C. Similarity Measures of Spherical Fuzzy Sets Based on Cosine Function and Their Applications. IEEE Access. 2019; 7: 159069-159080. https://doi.org/10.1109/ACCESS.2019.2949296 .
Kumar V, Gupta A, Taneja HC. Solution of Transportation Problem Under Spherical Fuzzy Set. In 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), 17-19 December 2021, Arad, Romania. IEEE. 2021; 444-448.
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 K. Hemalatha, Venkateswarlu B
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.