بوليمرات الطبعة الجزيئية(MIPs) ل دي -ارابينيتول D-arabinitol غير التساهمية لتحديد كحول السكر المختلف

محتوى المقالة الرئيسي

Yuni Retnaningtyas
https://orcid.org/0000-0003-0725-9560
Ganden Supriyanto
https://orcid.org/0000-0002-6358-2744
Roedi Irawan
Siswandono Siswodihardjo

الملخص

تعد البوليمرات التي تطبع جزيئيًا (MIPs) طريقة فعالة لفصل المركبات الطيفية. الهدف الرئيسي من هذا البحث هو تجميع D-arabinitol MIPs ، والتي يمكن أن تفصل بشكل انتقائي بين D-arabinitol وتطبيقه المحتمل لتمييزه عن مركب enantiomer الخاص به من خلال نهج غير تساهمي. تم تصنيع بوليمر ضخم باستخدام D-arabinitol كقالب ، الأكريلاميد كمونومر وظيفي ، إيثيلين جليكول dimethacrylate (EGDMA) كونه رابطًا متقاطعًا ، ثنائي ميثيل سلفوكسيد (DMSO) كان بوروجان ، وكذلك بنزويل بيروكسيد كونه بادئًا. بعد تصنيع البوليمر ، تمت إزالة D-arabinitol بمزيج من الميثانول وحمض الخليك (4: 1 ، v / v). يقوم التحليل الطيفي بالأشعة تحت الحمراء (FT-IR) والفحص المجهري الإلكتروني (SEM) بتمييز MIPs  و NIPs. تم إجراء اختبار انتقائي لـ MIPs ضد enantiomers (L-arabinitol و xylitol و adonitol و glucose) باستخدام طريقة إعادة الدفعة. تم تحديد موقع الارتباط كمياً باستخدام معادلة لانجمير. أظهرت نتائج اختبار الانتقائية أن MIPs التي تم إنتاجها كانت انتقائية تمامًا تجاه enantiomer ويمكن استخدامها لفصل D-arabinitol عن enantiomer.

تفاصيل المقالة

كيفية الاقتباس
1.
بوليمرات الطبعة الجزيئية(MIPs) ل دي -ارابينيتول D-arabinitol غير التساهمية لتحديد كحول السكر المختلف. Baghdad Sci.J [انترنت]. 20 ديسمبر، 2021 [وثق 23 نوفمبر، 2024];18(4(Suppl.):1536. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5189
القسم
article

كيفية الاقتباس

1.
بوليمرات الطبعة الجزيئية(MIPs) ل دي -ارابينيتول D-arabinitol غير التساهمية لتحديد كحول السكر المختلف. Baghdad Sci.J [انترنت]. 20 ديسمبر، 2021 [وثق 23 نوفمبر، 2024];18(4(Suppl.):1536. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5189

المراجع

Larsson L, Pehrson C, Wiebe T, Christensson B. Gas chromatographic determination of D-arabinitol/L-arabinitol ratios in urine: a potential method for diagnosis of disseminated candidiasis. J. Clin. Microbiol. [Internet]. American Society for Microbiology; 1994;32(8):1855–9. Available from: http://dx.doi.org/10.1128/jcm.32.8.1855-1859.1994

Reiss E, Obayashi T, Orle K, Yoshida M, Zancopé-Oliveira RM. Non-culture based diagnostic tests for mycotic infections. Med. Mycol. J. [Internet]. Oxford University Press (OUP); 2000 Jan;38(1):147–59. Available from: http://dx.doi.org/10.1080/mmy.38.1.147.159

Yeo SF, Zhang Y, Schafer D, Campbell S, Wong B. A Rapid, Automated Enzymatic Fluorometric Assay for Determination of d-Arabinitol in Serum. J. Clin. Microbiol [Internet]. American Society for Microbiology; 2000;38(4):1439–43. Available from: http://dx.doi.org/10.1128/jcm.38.4.1439-1443.2000

Stradomska TJ, Mielniczuk Z. Gas chromatographic determination of d-/l-arabinitol ratio in healthy Polish children. J. Chromatogr. B [Internet]. Elsevier BV; 2002 Jun;773(2):175–81. Available from: http://dx.doi.org/10.1016/s1570-0232(02)00180-0

Yeo SF, Huie S, Sofair AN, Campbell S, Durante A, Wong B. Measurement of Serum D-Arabinitol/Creatinine Ratios for Initial Diagnosis and for Predicting Outcome in an Unselected, Population-Based Sample of Patients with Candida Fungemia. J. Clin. Microbiol [Internet]. American Society for Microbiology; 2006 Sep 6;44(11):3894–9. Available from: http://dx.doi.org/10.1128/jcm.01045-06

Stradomska TJ, Sobielarska D, Mielniczuk Z, Jagiełłowicz D, Syczewska M, Dzierżanowska D. Determination of urinary d-/l-arabinitol ratios as a biomarker for invasive candidiasis in children with cardiac diseases. J. Med. Microbiol. [Internet]. Microbiology Society; 2010 Dec 1;59(12):1490–6. Available from: http://dx.doi.org/10.1099/jmm.0.018135-0

Christensson B, Sigmundsdottir G, Larsson L. D-arabinitol - a marker for invasive candidiasis. Med. Mycol. J. [Internet]. Oxford University Press (OUP); 1999 Dec;37(6):391–6. Available from: http://dx.doi.org/10.1046/j.1365-280x.1999.00249.x

Ashley J, Shahbazi M-A, Kant K, Chidambara VA, Wolff A, Bang DD, et al. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron. [Internet]. Elsevier BV; 2017 May;91:606–15. Available from: http://dx.doi.org/10.1016/j.bios.2017.01.018

Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem. Soc. Rev. [Internet]. Royal Society of Chemistry (RSC); 2016;45(8):2137–211. Available from: http://dx.doi.org/10.1039/c6cs00061d

Egli SN, Butler ED, Bottaro CS. Selective extraction of light polycyclic aromatic hydrocarbons in environmental water samples with pseudo-template thin-film molecularly imprinted polymers. Anal. Methods [Internet]. Royal Society of Chemistry (RSC); 2015;7(5):2028–35. Available from: http://dx.doi.org/10.1039/c4ay02849j

Martín-Esteban A. Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis. Trends Environ. Anal. Chem. [Internet]. Elsevier BV; 2016 Jan;9:8–14. Available from: http://dx.doi.org/10.1016/j.teac.2016.01.001

Dabrowski M, Sharma PS, Iskierko Z, Noworyta K, Cieplak M, Lisowski W, et al. Early diagnosis of fungal infections using piezomicrogravimetric and electric chemosensors based on polymers molecularly imprinted with d-arabitol. Biosens. Bioelectron [Internet]. Elsevier BV; 2016 May;79:627–35. Available from: http://dx.doi.org/10.1016/j.bios.2015.12.088

Frasco M, Truta L, Sales M, Moreira F. Imprinting Technology in Electrochemical Biomimetic Sensors. Sensors [Internet]. MDPI AG; 2017 Mar 6;17(3):523. Available from: http://dx.doi.org/10.3390/s17030523

Mip Synthesis, Characteristics and Analytical Application. Comprehensive Analytical Chemistry, 1st ed. United State : Elsevier; 2019, Chapter 2, Synthesis and polymerisation Techniques of Molecularly Imprinted Polymers; p.17-40 Available from: http://dx.doi.org/10.1016/s0166-526x(19)x0004-5

Roland RM, Bhawani SA. Synthesis and Characterization of Molecular Imprinting Polymer Microspheres of Piperine: Extraction of Piperine from Spiked Urine. J Anal Methods Chem. [Internet]. Hindawi Limited; 2016;2016:1–6. Available from: http://dx.doi.org/10.1155/2016/5671507

Wang J, Xue M, Meng Z, Xu Z, Luo J. Application of molecularly imprinted polymers for the solid-phase extraction of hexanitrohexaazaisowurtzitane (CL-20) from soil samples. Analytical Methods [Internet]. R. Soc. Chem ; 2016;8(22):4413–20. Available from: http://dx.doi.org/10.1039/c6ay00198j

Christian P, Coclite AM. Vapor-phase-synthesized fluoroacrylate polymer thin films: thermal stability and structural properties. Beilstein J. Nanotechnol. [Internet]. Beilstein Institut; 2017 Apr 26;8:933–42. Available from: http://dx.doi.org/10.3762/bjnano.8.95

Zhang W, Li Q, Cong J, Wei B, Wang S. Mechanism Analysis of Selective Adsorption and Specific Recognition by Molecularly Imprinted Polymers of Ginsenoside Re. Polymers [Internet]. MDPI AG; 2018 Feb 22;10(2):216. Available from: http://dx.doi.org/10.3390/polym10020216

Okutucu B, Önal S, Telefoncu A. Noncovalently galactose imprinted polymer for the recognition of different saccharides. Talanta [Internet]. Elsevier BV; 2009 May 15;78(3):1190–3. Available from: http://dx.doi.org/10.1016/j.talanta.2009.01.047

Cormack PA., Elorza AZ. Molecularly imprinted polymers: synthesis and characterisation. J. Chromatogr. B [Internet]. Elsevier BV; 2004 May;804(1):173–82. Available from: http://dx.doi.org/10.1016/j.jchromb.2004.02.013

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.