تشخيص COVID-19 باستخدام التحليل الطيفي والإحصائي لتسجيلات السعال بناءً على مزيج من SVD و DWT
محتوى المقالة الرئيسي
الملخص
تستخدم الإشارات الصوتية التي يولدها جسم الإنسان بشكل روتيني من قبل التخصصين في البحوث والتطبيقات الصحية للمساعدة في تشخيص بعض الامراض أو تقييم تقدم المرض. وبالنظر إلى التقنيات الجديدة ، من الممكن في الوقت الحاضر جمع الأصوات التي يولدها الإنسان ، مثل السعال. ويمكن بعد ذلك اعتماد تقنيات التعلم الآلي المستندة إلى الصوت من أجل التحليل التلقائي للبيانات التي تم جمعها مما يوفر معلومات قيمة غنية من إشارة السعال واستخراج الميزات الفعالة من فترة زمنية محدودة الطول تتغير كدالة للوقت. في هذا البحث يتم اقتراح وتقديم خوارزمية للكشف عن COVID-19 وتشخيصه من خلال معالجة السعال الذي يتم جمعه من المرضى الذين يعانون من الأعراض الأكثر شيوعًا لهذا الوباء. تعتمد الطريقة المقترحة على اعتماد مزيج من تحليل القيمة المفردة (SVD) وتحويل المويجات المنفصل (DWT). وقد أدى الجمع بين هاتين التقنيتين لمعالجة الإشارات إلى اتباع نهج جيد للتعرف على السعال ، حيث يولد ويستخدم الحد الأدنى من الميزات الفعالة. وفي هذه الخوارزمية المقترحة يتم تطبيق الترددات المتوسطة (mean and median)، والمعروفة بأنها أكثر الميزات المفيدة في مجال التردد ، لإنشاء مقياس إحصائي فعال لمقارنة النتائج. بالإضافة إلى الحصول على معدل كشف وتمييز عاليين ، تتميز الخوارزمية المقترحة بكفاءتها حيث يتم تحقيق تخفيض 200 مرة، من حيث عدد العمليات. على الرغم من حقيقة أن أعراض الأشخاص المصابين وغير المصابين في الدراسة بها الكثير من أوجه التشابه ، فإن نتائج التشخيص التي تم الحصول عليها من تطبيق نهجنا تُظهر معدل تشخيص مرتفعًا، والذي تم إثباته من خلال مطابقتها مع اختبارات PCR ذات الصلة. نعتقد أنه يمكن تحقيق أداء أفضل من خلال توسيع مجموعة البيانات ، مع تضمين الأشخاص الأصحاء.
Received 3/9/2021
Accepted 11/5/2022
Published Online First 20/9/2022
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Sultan H, Sultan A, Maded Z, Sultan H. A Descriptive Study of Covid-19 Infection Among Symptomatic Patients in Al-Hawija District-Kirkuk-Iraq. Int. J. Psychosoc. Rehabilitation. 2020;24(10):4403-10. DOI: 10.37200/IJPR/V24I10/PR300435.
Alafif T, Bajaba S, Barnawi Ahmed. Machine and deep learning towards COVID-19 diagnosis and treatment: survey, challenges, and future directions. Int J Environ Res. 2021; 18: 1117-19. https://doi.org/10.3390/ijerph18031117
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382: 1708-20. https://www.nejm.org/doi/full/10.1056/nejmoa2002032#:~:text=DOI%3A%2010.1056/NEJMoa2002032
European Society of Medical Imaging Informatics. Automated Diagnosis and Quantitative Analysis of COVID-19 on Imaging 2020. Available online: https://imagingcovid19ai.eu/ (accessed on 1 August 2021).
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507–13. https://doi.org/10.1016/S0140-6736(20)30211-7
Kumar V, Doshi K, Khan W, Rathore A. COVID-19 pandemic: mechanism, diagnosis, and treatment. J Chem Technol Biotechnol. 2020 Dec 96(2); 278-93. https://doi.org/10.1002/jctb.6641
Lawrence R, Juang B. Fundamentals of speech recognition. Pearson College Div; United States 1st Edition. 1993. Chap2: 11-68. ISBN-13: 978-0130151575. https://www.Amazon.Com/Fundamentals-Speech-Recognition-Lawrence-Rabiner/Dp/0130151572
Dengpan Y, Shunzhi J, Huang J. Heard More Than Heard: An Audio Steganography Method Based on GAN. arXiv preprint arXiv:1907.2019; 04986. https://doi.org/10.48550/arXiv.1907.04986
Zehtabian A, Hassanpour H, Zehtabian S. Singular Vector Based Approaches for Speech Enhancement, Chapter 12 of Signal Processing: New Research, 2013; 257-279. Nova Science Publishers, Inc.ISBN: 978-1-62808-141-1. https://www.researchgate.net/publication/287341403_Singular_vector_based_approaches_for_speech_enhancement
Kour B, Singh R, Lehana P, Rajput P. Effect of Singular Value Decomposition Based Processing On Speech Perception. IJNLC., 2013; (2):1:9-16. https://airccse.org/journal/ijnlc/papers/2113ijnlc04.pdf
Elizabeth A. Compton and Stacey L. Ernstberger, Singular Value Decomposition: Applications to Image Processing, J Undergrad Res. 2020; 17: 99-105. https://www.lagrange.edu/academics/undergraduate/undergraduate-research/citations/18-Citations2020.Compton.pdf
Khan M, Rahman M, Sarker M. Digital Watermarking for Image Authentication Based on Combined DCT, DWT and SVD Transformation, arixv.org, 2013, https://arxiv.org/ftp/arxiv/papers/1307/1307.6328.pdf.
Kusumaningrum D, Rachmawanto E, Sari C, Pradana R. DWT-SVD Combination Method for Copyrights Protection. J Info Sci. 2020; 7(1): 113-124. https://journal.unnes.ac.id/nju/index.php/sji/article/view/21050
Al-Ani M, Mohammed T, Aljebory K. Speaker Identification: A Hybrid Approach Using Neural Networks and Wavelet Transform. Science publications. J Comput Sci. 2007; 3 (5): 404-409. doi:10.3488/jcssp.2007.304.309, 2007.
Aniruddha K, Aghila G. A DCT–SVD-based speech steganography in voiced frames. Circuits, Syst. Signal Process. 2018; 37(11): 5049-5068. DOI:10.1007/S00034-018-0805-9
Aniruddha K, Aghila G. DCT based audio steganography in voiced and un-voiced frames. Proc. Int Conf Eng Sci. Appl. 2016:1-4. https://doi.org/10.1145/2980258.2980360
Thanki R, Borisagar K, Dwivedi V. A Hybrid Signal Compression Technique using CS Theory and Various Transform for Speech and ECG. Int Conf Intell Syst Sig Proc. (ISSP 2017). G.H. Patel of Engineering. India :1-14. https://link.springer.com/chapter/10.1007/978-981-10-6977-2_1
Yuhui L, Gou W, Li B. A new digital watermark algorithm based on the DWT and SVD. 10th Int Symp Dist Comput Appl Bus Eng Sci. 2011. DOI 10. 1109/DCABES. 2011. 7
Mohammed T, Al Jebory K, Abdul Rasheed M, Al-Ani M, Sagheer A. Analysis of Methods and Techniques Used for Speaker Identification, Recognition and Verification: A Study on Quarter-Century Research Outcomes. Iraqi J Sci. 2021; 62(9). https://doi.org/10.24996/ijs.2021.62.9.38
Baithoon N, Combined DWT and DCT Image Compression Using Sliding RLE Technique. Baghdad Sci J. 2011; 8(3): 832-83. https://doi.org/10.21123/bsj.2011.8.3.832-839
Abdelwahab, K, El-atty S, Brisha, Ayman M, El-Samie F, Efficient cancelable speaker identification system based on a hybrid structure of DWT and SVD. Int J Speech Technol. 2022. https://doi.org/10.1007/s10772-020-09778-9
Kumar KP, Kanhe A. Secured Speech Watermarking with DCT Compression and Chaotic Embedding Using DWT and SVD. Arab J Sic Eng. 2022 Jan 27:1-22. https://doi.org/10.1007/s13369-021-06431-8.
Jane O, Elbasi E. A new approach of nonblind watermarking methods based on DWT and SVD via LU decomposition. Turk J Elec Eng Comp Sci. 2014; 22(5): 1354-1366. doi:10.3906/elk-1212-75.
Rassem T, Makbol N, Khoo B. Performance Evaluation of RDWT-SVD and DWT-SVD Watermarking schemes. Int Conf Adv Sci, Eng Tech. 2015 AIP Conf. Proc. 1774, 050021-1–050021-9; doi: 10.1063/1.4965108.
Fonseca E, Guido R, Junior S, Dezani H, Gati R, Mosconi P, et al. Acoustic investigation of speech pathologies based on the discriminative paraconsistent machine (DPM). Biomed Signal Process Control. 2019; 55: 1746-8094. DOI: 10.1016/j.bspc.2019.101615
Amami A, Smiti A. An incremental method combining density clustering and support vector machines for voice pathology detection. Comput Electr Eng. 2016; 57: 257-265. https://doi.org/10.1016/j.compeleceng.2016.08.021
Muhammad G, Altuwaijri G, Alsulaiman M, Ali Z, Mesallam T A, Farahat, et al. Automatic voice pathology detection and classification using vocal tract area irregularity. Biocybern Biomed Eng. 2016; 36(2): 309-317. http://dx.doi.org/10.1016/j.bbe.2016.01.004
Bendal M, Soni J, Chhugani G, Sahu N, Choubey N, Bothe S. Voice Based Disease Identification System. Turk J. Comput Math Educ. 2021; 12(1): 96-105. https://doi.org/10.17762/turcomat.v12i1S.1568
Chung K, Widdicombe J. Cough. Murray and Nadel's Textbook of Respiratory Medicine: 2-Volume Set. 5th ed.: Elsevier Health Sciences; 2010: 628-645. URL: https://sites.dartmouth.edu/odame/files/2017/06/Technologies-for-Developing-Ambulatory-Cough-Monitoring-Devices-1sl9s7w.pdf
Amoh J, Odame K. Technologies for Developing Ambulatory Cough Monitoring Devices. Analog Laboratory, Thayer School of Engineering, Dartmouth College. Crit Rev Biomed Eng. 2013;41(6):457-68. https://pubmed.ncbi.nlm.nih.gov/24940659/
Al-Ani M, Mohammed T, Sultan A, Sultan H, Alheeti K, Aljebory K. Detection and Diagnostic Approach of COVID-19 Based on Cough Sound Analysis. J Comput Sci. 2021; 17 (6): 580-597 DOI: .3844/jcssp.2021.580.597.
Salah H A, Ahmed S A. Coronavirus Disease Diagnosis, Care and Prevention (COVID-19) Based on Decision Support System. Baghdad Sci J. 2021;18(3):593-613. https://doi.org/10.21123/bsj.2021.18.3.0593
Renard X , S. Imtiaz E. Rodriguez-Villegas. A Cough-Based Algorithm for Automatic Diagnosis of Pertussis. PLoS one. 2016; 11(9). doi: 10.1371/journal.pone.0162128.
Zealouk O, Satori H, Hamidi M,Laaidi N,Salek A ,Satori K. Analysis of COVID-19 Resulting Cough using Formants and Automatic Speech Recognition System. J Voice. 2021; doi: https://doi.org/10.1016/j.jvoice.2021.05.015.
Brown C, Chauhan J, Grammenos A, Han J, Hasthanasombat A, Spathis D et al. Exploring Automatic Diagnosis of COVID-19 from Crowd sourced Respiratory Sound Data. KDD ‘20, August 23–27, 2020, Virtual Event, USA. https://doi.org/10.1145/3394486.3412865
Mouawad P, Dubnov T, Dubnov S. Robust Detection of Covid 19 In Cough Sounds Using Recurrence Dynamics and Variable Markov Model. SN Comput Sci. 2021;2(1):34. doi:10.1007/S42979-020-00422-6