تحليل الأديبوكينات وبعض هرمونات الستيرويد في احتشاء عضلة القلب
محتوى المقالة الرئيسي
الملخص
الموت الشامل بسبب أمراض القلب والأوعية الدموية هو السبب السائد للوفاة، ومرض القلب الإقفاري هو السبب البارز. هناك ميل لزيادة حساسية الأساليب في المختبر المعاصر لتشخيص الأمراض القلبية الوعائية، وتقييم المفتاح كمؤشرات حيوية للأمراض القلبية الوعائية. المهمة العاجلة هي البحث عن مؤشرات مختلفة كأداة للكشف المبكر عن احتشاء عضلة القلب ومراقبته. ضمت هذه المحاولة ١١٧ متطوعًا، تم تسجيلهم من كلا الجنسين في الفئة العمرية من ٣٢ إلى ٦٤ عامًا. تم تصنيف المتطوعين إلى مجموعتين: ٦٧ مريضًا من احتشاء عضلة القلب، واحتضنت المجموعات الأخرى ٥٠ فردًا سليمًا. تم جمع عينات الدم وتوجيهها للتحليل الكيميائي الحيوي لتقييم مستويات هرمون الاستراديول والتستوستيرون والبروجسترون والأديبونكتين واللبتين والدهون في كل مجموعة. بناءً على التقييم الإحصائي لمعلمات المؤشر الحيوي، يمكن الإعلان عن الاستنتاج التالي من هذه الدراسة، وهو انخفاض كبير في مستويات هرمون التستوستيرون والبروتين الدهني عالي الكثافة (P <0.001) في احتشاء عضلة القلب، ضمن P <0.061 المرتفعة بشكل ملحوظ من مستويات البروجسترون في عضلة القلب مرضى الاحتشاء بالمقارنة مع الأفراد الأصحاء. أشارت الاختبارات الكيميائية الحيوية المتبقية إلى مستويات مرتفعة بشكل ملحوظ في المرضى الذين يعانون من احتشاء عضلة القلب مثل استراديول (P <0.001) ، أديبونكتين (P <0.001)، ليبتين (P <0.001) ، الكلي الكوليسترولالكوليسترول (P <0.001) ، الدهون الثلاثية P) <0.001) ومستويات البروتين الدهني منخفض الكثافة ) P <0.001). تُظهر الأديبوكينات (أديبونكتين ، لبتين) وبعض هرمونات الستيرويد (استراديول ، هرمون التستوستيرون) أدوارًا حاسمة في تحسين أمراض التمثيل الغذائي والقلب والأوعية الدموية ويمكن استخدامها كمؤشر حيوي للتعرض لاحتشاء عضلة القلب، والسلوك الطبي والشدة. يقدم هذا الإقرار التشخيص المبكر للمرض وتطوره.
Received 11/1/2022
Accepted 7/4/2022
Published Online First 20/9/2022
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Ueda K, Fukuma N, Adachi Y, Numata G, Tokiwa H, Toyoda M, et al. Sex differences and regulatory actions of estrogen in cardiovascular system. Front Physiol. 2021; 2: 1-9. https://doi.org/10.3389/fphys.2021.738218
Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, et al. How is cardiac troponin released from injured myocardium Eur Heart. J Acute Cardiovasc. 2018; 7(6):
–560, https://doi.org/10.1177/2048872617748553
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA et al. Fourth Universal Definition of Myocardial Infarction. J Am Coll Cardiol. 2018; 72(18): 2231-64.
Zeng J, Huang J, Pan L. How to balance acute myocardial infarction and COVID-19: the protocols from Sichuan Provincial People’s Hospital. Intensive Care Med. 2020; 46: 1111–13.
Anderson JL, Morrow DA. Acute myocardial infarction. New Eng J Med. 2017; 376(21): 2053–64. https://doi.org/10.1056/NEJMra1606915
Kachur S, Lavie CJ, de Schutter A, Milani RV, Ventura HO. Obesity and cardiovascular diseases. Minerva Med. 2017; 108: 212-228.
Zhu J, Su X, Li G, Chen J, Tang B, Yang Y. The incidence of acute myocardial infarction in relation to overweight and obesity: a meta-analysis. Arch Med Sci. 2014;10(5):855-862. doi:10.5114/aoms.2014.46206
Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016; 118: 1786--1807.
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front Physiol. 2020; 11: 578966. doi: 10.3389/fphys.2020.578966.
Funcke JB, Scherer PE. Beyond adiponectin and leptin: Adipose tissue-derived mediators of inter-organ communication. J Lipid Res. 2019; 60: 1648-1684.
Weschenfelder C, Schaan de Quadros A, Lorenzon dos Santos J, Garofallo SB, Marcadenti A. Adipokines and adipose tissue-related metabolites, nuts and cardiovascular disease. Metabolites. 2020; 10(1): 32. doi: 10.3390/metabo10010032.
Pandit R, Beerens S, Adan RAH. Role of leptin in energy expenditure: the hypothalamic perspective. Am J Physiol Regul Integr Comp Physiol. 2017; 312: R938-R947.
Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017; 18:1321. doi: 10.3390/ ijms18061321.
Funder JW. Primary aldosteronism. Hypertension. 2019; 74: 458- 466.
Dwyer AR, Truong TH, Ostrander JH, Lange CA. 90 years of progesterone: steroid receptors as MAPK signaling sensors in breast cancer: let the fates decide. J Mol Endocrinol. 2020; 65: T35-T48.
Lee JH, Shah PH, Uma D, Salvi DJ, Rabbani R, Hamid P. Testosterone replacement therapy in hypogonadal men and myocardial infarction risk: systematic review & meta-analysis. Cureus. 2021; 13(8): e17475. doi: 10.7759/cureus.17475
Iwakura A, Shastry S, Luedemann C, Hamada H, Kawamoto A, Kishore R, et al. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow–derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase–mediated activation of matrix metalloproteinase-9. Circulation. 2006; 113: 1605-1614. https://doi.org/10.1161/CIRCULATIONAHA.105.553925.
Zhang J, Abou-Fadel JS. Calm the raging hormone - a new therapeutic strategy involving progesterone-signaling for hemorrhagic CCMs. Vessel Plus. 2021; 5: 48.
Nigro E, Scudiero O, Sarnataro D, Mazzarella G, Sofia M, Bianco A, et al. Adiponectin affects lung epithelial A549 cell viability counteracting TNFa and IL-1ß toxicity through AdipoR1. Int J Biochem Cell Biol. 2013; 45: 1145-53. doi: 10.1016/j.biocel.2013.03.003
Subedi A, Park PH. Autocrine and paracrine modulation of microRNA-155 expression by globular adiponectin in RAW 264.7 macrophages: involvement of MAPK/NF-κB pathway. Cytokine. 2013; 64: 638-41. doi: 10.1016/j.cyto.2013.09.011
Villarreal-Molina MT, Antuna-Puente B. Adiponectin: antiinflammatory and cardioprotective effects. Biochimie. 2012; 94: 2143-49. doi: 10. 1016/j.biochi.2012.06.030
Ahmed HH, Shousha WG, El-Mezayen HA, Emara IA, Hassan ME. New biomarkers as prognostic factors for cardiovascular complications in type 2 diabetic patients. Indian J Clin Biochem. 2020; 35: 54-62. doi: 10.1007/ s12291-018-0784-4
Diah M, Lelo A, Lindarto D, Mukhtar Z. Plasma concentrations of adiponectin in patients with coronary artery disease and coronary slow flow. Acta Med Indones. 2019; 51: 290-95.
Achari AE, K Jain S. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017; 18(6): 1321. doi: 10.3390/ijms18061321.
Martin SS, Blaha MJ, Muse ED, Qasim AN, Reilly MP, Blumenthal RS, et al. Leptin and incident cardiovascular disease: The Multi-ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2015; 239: 67-72.
Bickel C, Schnabel RB, Zeller T, Lackner KJ, Rupprecht HJ, Blankenberg S, et al. Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: Results from the AtheroGene study. Biomarkers. 2017; 22: 210-218.
Yang H, Guo W, Li J, Cao S, Zhang J, Pan J, et al. Leptin concentration and risk of coronary heart disease and stroke: A systematic review and meta-analysis. PLoS One 2017; 12: e0166360.
Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin. 2018; 39(7): 1176-88. doi: 10.1038/aps.2018.40
Peters SAE, Woodward M. Oestradiol and the risk of myocardial infarction in women: a cohort study of UK Biobank participants. Int J Epidemiol. 2021; 50(4): 1241-49. doi: 10.1093/ije/dyaa284.
Maggi M, Wu FC, Jones TH, Jackson G, Behre HM, Hackett G et al. Testosterone treatment is not associated with increased risk of adverse cardiovascular events: results from the Registry of Hypogonadism in Men (RHYME). Int J Clin Pract. 2016; 70:843-52. doi:10.1111/ijcp.12876
Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008; 93: 68-75. doi: 10.1210/jc.2007-1792
Tivesten A, Vandenput L, Labrie F, Karlsson MK, Ljunggren O, Mellström D, et al. Low serum testosterone and estradiol predict mortality in elderly men. J Clin Endocrinol Metab. 2009; 94: 2482-8. doi:10.1210/jc.2008-2650
Khera M, Miner M, Jaffe J, Pastuszak AW. Testosterone therapy and cardiovascular risk: a critical analysis of studies reporting increased risk. J Sex Med. 2021; 18: 83-98. doi: 10.1016/j.jsxm.2020.10.019
Nagy B, Szekeres-Barthó J, Kovács GL, Sulyok E, Farkas B, Várnagy Á, et al. Key to life: Physiological role and clinical implications of progesterone. Int J Mol Sci. 2021; 22: 11039. https://doi.org/10.3390/ijms222011039.
Okoth K, Singh J, Thomas G, Nirantharakumar K. Association between the reproductive health of young women and cardiovascular disease in later life: BMJ 2020; 371. MJ 2020; 371 doi: https://doi.org/10.1136/bmj.m3502
Shufelt CL, Bairey Merz CN. Contraceptive hormone use and cardiovascular disease. J Am Coll Cardiol. 2009; 53: 221–31.
Bernstein P, Pohost G. Progesterone, progestins, and the heart. Rev Cardiovasc Med. 2010; 11(4): 228-36.
Nie L, Wei D, Liu P, Zhang L, Fan K, Song Y, et al. C-Reactive protein mediates the effect of serum progesterone on obesity for men and postmenopausal women in henan rural cohort study. J Inflamm Res. 2021; 14: 633–644. doi: 10.2147/JIR.S293882
Ibrahim AE, Ibrahem ZI, Thamer H. Comparison study of Interleukin-1 alpha between unstable angina and acute myocardial infarction patients. Baghdad Sci J. 2013; 10(3): 915-20.
Ahmed HH, Shousha WG, El-Mezayen HA, Emara IA, Hassan ME. New biomarkers as prognostic factors for cardiovascular complications in type 2 diabetic patients. Indian J Clin Biochem. 2020; 35: 54-62. doi: 10.1007/ s12291-018-0784-4.
Kadhim HY, Jaddoue BA. Assessment of risk factors for myocardial infarction and its relationship with some variables. Baghdad Sci J. 2010; 7(1): 784-87.