تحضير انابيب الكاربون النانوية باستخدام طريقة مطورة واستخدامها كقطب محيط في صناعة خلية شمسية صبغية

محتوى المقالة الرئيسي

Mazin Hasan Raheema
https://orcid.org/0009-0002-5632-690X
Ghufran S. Jaber
https://orcid.org/0000-0002-5756-2229

الملخص

في هذا العمل ،تم تحضير الأنابيب الكاربون النانوية باستخدام طريقة هامرز( (Hummers  مع تغيير طفيف في بعض خطوات العمل، وبالتالي أنشأنا طريقة جديدة بتحضير الأنابيب الكاربون النانوية ، على غرار طريقة هامرز( Hummers) الأصلية التي تم استخدامها لتحضير اوكسيد الجرافين ، بعد ذلك تم تحضير معلق من الأنابيب الكاربون النانوية ونقلها إلى خلية كهروكيميائية بسيطة مكونة من قطبين لترسيب واختزال وطلاء الأنابيب الكاربون النانوية على قطب المهبط (cathode) مصنوع من زجاج الموصل( (ITO بينما كان قطب المصعد (anode) عبارة عن رقيقة البلاتين.تم تشخيص الأنابيب الكاربون النانوية بواسطة تقنية المجهر الإلكتروني الماسح( SEM ), أظهرت هذه الصور تكوين الأنابيب النانوية الكربونية.في الجزء الثاني من البحث ، تم تحضير خلية شمسية صبغية (DSSCs)  باستخدام أنابيب الكربون النانوية كقطب محيط ((counter ، وجسيمات أوكسيد التيتانيوم النانوية كقطب مصعد (anode) وباستخدام صبغة طبيعية (صبغة الرمان). بعد ذلك تم فحص الخلية بواسطة المجهاد الساكن ذو القطبين باستخدام  مصدر ضوء الزينون  حيث تم الحصول المعلومات التالية: جهد الدائرة المفتوحة (Vocp) ، دائرة مقصورة  Isc)), الفولتية العظمى ( ,(Vmax التيار الاعظم (Imax)  ومن هذه المعلومات تم حساب العامل الكامل(full facter)   وكفاءة الخلية.

تفاصيل المقالة

كيفية الاقتباس
1.
تحضير انابيب الكاربون النانوية باستخدام طريقة مطورة واستخدامها كقطب محيط في صناعة خلية شمسية صبغية. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2023 [وثق 23 يناير، 2025];20(6). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7150
القسم
article

كيفية الاقتباس

1.
تحضير انابيب الكاربون النانوية باستخدام طريقة مطورة واستخدامها كقطب محيط في صناعة خلية شمسية صبغية. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2023 [وثق 23 يناير، 2025];20(6). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7150

المراجع

Luo T, Chen X, Li P, Wang P, Li C, Cao B, et al . Laser irradiation- induced laminated graphene/MoS2 composites with synergistically improved tribological properties. Nanotechnology. 2018; 29 (26). https://iopscience.iop.org/article/10.1088/1361-6528/aabcf5/meta.

Iijima S. Helical microtubules of graphitic carbon. Nature. 1991; 354 (6348): 56-58.

https://www.nature.com/articles/354056a0.

Moniri S, Ghoranneviss M, Hantehzadeh R, Asadabad M. Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. Bull. Mater. Sci. 2017; 40(1): 37-43.

https://doi.org/10.1007/s12034-016-1348-y

Entesar AG, Al-Jabarti GA, Reem MA. The synthesis of carbon-based nanomaterials by pulsed laser ablation in water. Mater Res Express. 2020; 7(1): 015002. https://iopscience.iop.org/article/10.1088/2053-1591/ab572b

Dudek M, Rosowski A, Koperkiewicz A, Grobelny J, Wach R, Sharp M, et al. Carbon nanoparticles fabricated by infrared laser ablation of graphite and polycrystalline diamond targets. Phys Status Solidi A. 2017; 214 (2):1600318.

https://doi.org/10.1002/pssa.201600318.

Tarasenka N, Stupak A, Tarasenko N, Chakrabarti S, Mariotti D. Structure and optical properties of carbon nanoparticles generated by laser treatment of graphite in liquids. Chem Phys. 2017; 18(9): 1074-1083. https://doi.org/10.1002/cphc.201601182.

Yogesh GK, Shuaib E, Sastikumar D. Photoluminescence properties of carbon nanoparticles synthesized from activated carbon powder(4% ash) by laser ablation in solution. Mater. Res. Bull 2017; 91: 220-226. https://doi.org/10.1016/j.materresbull.2017.02.038. http://www.sciencedirect.com/science/article/pii/S0025540816319894.

Teri WO, Jin LH, Philip MK, Charles ML. Structure and Electronic Properties of Carbon Nanotubes. Chem Phys. 2000; 104(13): 2794–2809.

https://pubs.acs.org/doi/full/10.1021/jp993592k

Staudenmaier L. The synthesis of graphitic acid. Chem Ber. 1898; 31: 1481-1487. https://doi.org/10.1002/cber.18980310237

Buthainah A, Dayang R, Sapuan S, Zaidan A, Alnuami W, Mohamed Y, et al. Preparation of Carbon Nanotubes via Chemical Technique (Modified Staudenmaier Method. Nanosci. Nanotechnol. - Asia. 2017; 7(1): 113-122.

https://doi.org/:10.2174/2210681206666160711161421

Al-Sammarraei AM, Mazin HR. Reduced Graphene Oxide Coating for Corrosion Protection Enhancement of Carbon Steel in Sea water. Iraqi J Sci. 2016; (Special Issue, Part B): 243-250.

Al-Sammarraei AM, Mazin HR. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement. Int J Corros. 2017; 2017 (6939354). https://doi.org/10.1155/2017/6939354

Kiran NU, Sanjukta D, Bimal PS, Laxmidhar B. Graphene Coating on Copper by Electrophoretic Deposition for Corrosion Prevention. Coatings. 2017; 7(12): 214. https://doi.org/10.3390/coatings7120214 .

Yardnapar P, Preecha T, Sirinrath S. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays. J Nanomater. 2017; 2017:2194614). https://doi.org/10.1155/2017/2194614

Maryam A, Sahar P, Abdollah A. Corrosion resistance and photocatalytic activity evaluation of electrophoretically deposited TiO2-rGO nanocomposite on 316L stainless steel substrate Ceram Int. 2019; 45(11): 13747-13760.

https://doi.org/10.1016/J.CERAMINT.2019.04.071 .

Ollik K, Rybarczyk M, Karczewski J, Lieder M. Fabrication of anti-corrosion nitrogen doped graphene oxide coatings by electrophoretic deposition. Appl Surf Sci. 2020; 499(143914).

https://doi.org/10.1016/j.apsusc.2019.143914

Brian R, Michael G. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991; 353: 737–740.

https://www.nature.com/articles/353737a0

Aleksandra D, Leszek AD, Marek S, Marzena PP. Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application. Archives of Metallur and Materi. 2016; 61(2): 803-806. https://doi.org/10.1515/amm-2016-0135 .

Leszek AD, Marzena PP Aleksandra D, Wierzbicka's A. Carbon Nanomaterials Application as a Counter Electrode for Dye-Sensitized Solar Cells. Arch Metall Mater. 2017; 62(1): 27-32. https://doi.org/10.1515/amm-2017-0004

Lukaszkowicz K, Pawlyta M, Pasternak I, Dobrzański L A, Prokopiuk vel Prokopowicz M, Szindler M. Characterizations of graphene-based layers for dye sensitised solar cells application. Surf Eng. 2016; 32(11): 816-822. https://doi.org/10.1080/02670844.2016.1164276 .

Dobrzański LA, Marzena PP, Lukaszkowicz K, Drygała A, Szindler M. Graphene oxide film as semi-transparent counter electrode for dye-sensitized solar cell. J. of Achievements in Materia and Manufact Engineering. 2015; 73(1): 13-20.

http://jamme.acmsse.h2.pl/vol73_1/7312.pdf

Dobrzanski LA, et al. Carbon Nanomaterials application as a counter electrode for dye-sensitized solar cells. Arch Metall Mater. 2017; 62(1): 27-32. https://dx.doi.org/10.1515/amm-2017-0004

Haneen SH, Nada KA. Preparing and Studying Structural and Optical Properties of Pb1-xCdxS Nanoparticles of Solar Cells Applications. Baghdad J Sci. 2021; 18(3): 640-648.

http://dx.doi.org/10.21123/bsj.2021.18.3.0640

Isam MI, Abeer HK. Conjugated Polymer (MEH-PPV:MWCNTs) Organic Nanocomposite for Photodetector Application. Baghdad J Sci. 2018; 15(4): 441-448.

http://dx.doi.org/10.21123/bsj.2018.15.4.0441 .

Intisar AH, Rana IK, Asmaa MR. Structural and Optical Properties for Nanostructure (Ag2O/Si & Psi) Films for Photodetector Applications. Baghdad J Sci. 2019; 16 (4): 1036-1042.

http://dx.doi.org/10.21123/bsj.2019.16.4(Suppl.).1036

Sanchayan M, Pardhasaradhi N, Basudev P, Subramanian B, Subhendu K . Enhanced efficiency of DSSC by lyophilized tin-doped molybdenum sulfide as counter electrode. J Alloys Compd. 2022; 894 (162406). DOI: 10.1016/j.jallcom.2021.162406.

Aziz NA, Rahman MY, Umar AA. Palladium selenide as cathode for dye-sensitized solar cell: Effect of palladium content. Solid State Electron. 2022; 190 (108255). https://doi.org/10.1016/j.sse.2022.108255.

Aziz NA, Rahman MY, Umar AA. Comparative study of dye-sensitized solar cell utilizing selenium and palladium cathode. J Indian Chem Soc. 2022; 99 (100289).

Abdelaal SA, Wanchun X, Fatma SM, Xiujian Z. Screen-printed carbon black/SiO2 composite counter electrodes for dye-sensitized solar cells. Sol Energy. 2021; 230: 902-911.

https://doi.org/10.1016/j.solener.2021.11.004 .

Liu S, Qi W, Cao Y, Liang C, Geng S, Guo H, et al. Design and characterization of frog egg shaped CoFe2O4@C core-shell composite as a novel multi-functional counter electrode for low cost energy devices. J Alloys Comp. 2022; 915 (165395).

Liu S, Wang S, Coa Y, Zhang W, Li L. Application of ZIF-67 based nitrogen-rich carbon frame with embedded Cu and Co bimetallic particles in QDSSCs. Sol Energy. 2022; 237: 144–152.

Zhang X, Fan R, Liu M, Zhang W, Li L. Preparation of CoNi@CN composites based on metal- organic framework materials as high efficiency counter electrode materials for dye-sensitized solar cells. Solar Energy. 2022; 231: 767–774.

https://ui.adsabs.harvard.edu/link_gateway/2022SoEn..231..767Z/ https://doi.org/10.1016/j.solener.2021.12.006

Li Z, Liu S, Li L, Zhang Y, Zhang W. In situ grown MnCo2O4@NiCo2O4 layered core-shell plexiform array on carbon paper for high efficiency counter electrode materials of dye-sensitized solar cells. Mater Sci. 2021; 220 (110859).

https://doi.org/10.1016/j.solmat.2020.110859 .

Cherry B, Pardeep K. Use of natural dyes for the fabrication of dye-sensitized solar cell: a review. Bull. Pol Acad Sci Tech Sci 2021; 69(6): 1-12. https://dx.doi.org/10.24425/bpasts.2021.139319.

Das SK, Ganguli S, Kabir H, Khandaker JI, Ahmed F. Performance of Natural Dyes in Dye- Sensitized Solar Cell as Photosensitizer. Trans. Electr. Electron. Mater. 2020; 21(1): 105–116 https://dx.doi.org/10.1007/s42341-019-00158-y.

Hanaa JA, Balqees MA, Rana MS. Natural Pigment –Poly Vinyl Alcohol Nano composites Thin Films for Solar Cell. Baghdad Sci J. 2020; 17(3): 832-840. https://doi.org/10.21123/bsj.2020.17.3.0832

Ammar MH, Ons C, Ismail I. Promoting Solar Cell Efficiencies via Employing Sliver- Carbon- Pomegranate Peel Nano System. Baghdad Sci J. 2019; 16(2).

Akeem A, Mustafa G. Ternary Ni0.5Zn0.5Fe2O4/carbon nanocomposite as counter electrode for natural dye-sensitized solar cells: Electro-photovoltaic characterizations. J Photochem Photobio A: Chem. 2022; 425 (113665).

https://doi.org/10.1016/j.jphotochem.2021.113665 .

William SH, Richard EO. Preparation of graphitic oxide. J Am Chem Soc. 1958; 80(6): 1339- 1344. https://dx.doi.org/10.1021/ja01539a017 .

Schlichthörl G, Park NG, Frank AJ. Evaluation of the charge-collection efficiency of dye- sensitized nanocrystalline TiO2 solar cells. J Phys Chem B. 1999; 103(5): 782-791.

https://doi.org/10.1021/jp9831177 .

Zhang Q, Cao G. Nanostructured photoelectrodes for dye-sensitized solar cells. NanoToday. 2011; 6(1): 91-109.