بناء نموذج GARCH مستدام للتنبؤ بسعر المطاط: نهج دالة الترجيح المعدلة لهوبر

محتوى المقالة الرئيسي

Intan Martina Md Ghani
https://orcid.org/0000-0002-1212-6175
Hanafi A Rahim
https://orcid.org/0000-0002-9367-5423

الملخص

الطبيعة غير المستقرة وغير المؤكدة لأسعار المطاط الطبيعي تجعلها شديدة التقلب وعرضة للقيم المتطرفة ، والتي يمكن أن يكون لها تأثير كبير على كل من النمذجة والتنبؤ. لمعالجة هذه المشكلة ، يوصي البحث بنموذج هجين يجمع بين نموذج الانحدار الذاتي (AR) ونموذج التباين الشرطي الشرطي المعمم (GARCH). يستخدم النموذج وظيفة الترجيح Huber لضمان بقاء القيمة المتوقعة لأسعار المطاط مستدامة حتى في وجود القيم المتطرفة. تهدف الدراسة إلى تطوير نموذج مستدام والتنبؤ بالأسعار اليومية لمدة 12 يومًا من خلال تحليل 2683 من بيانات الأسعار اليومية من الدرجة 20 للمطاط الماليزي القياسي (SMR 20) في ماليزيا. يشتمل التحليل على قياسين للتشتت (IQR / 3 و Sn) وثلاثة مستويات من تلوث IO (0٪ ، 10٪ ، و 20٪). تشير النتائج إلى أن استخدام دالة الترجيح Huber مع قياس IQR / 3 لبناء نموذج AR (1) -GARCH (2،1) يؤدي إلى استدامة أفضل. هذه النتائج لديها القدرة على تعزيز نموذج GARCH عن طريق تعديل وظيفة الترجيح لمقدر M.

تفاصيل المقالة

كيفية الاقتباس
1.
بناء نموذج GARCH مستدام للتنبؤ بسعر المطاط: نهج دالة الترجيح المعدلة لهوبر. Baghdad Sci.J [انترنت]. 1 فبراير، 2024 [وثق 24 ديسمبر، 2024];21(2):0511. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7489
القسم
article

كيفية الاقتباس

1.
بناء نموذج GARCH مستدام للتنبؤ بسعر المطاط: نهج دالة الترجيح المعدلة لهوبر. Baghdad Sci.J [انترنت]. 1 فبراير، 2024 [وثق 24 ديسمبر، 2024];21(2):0511. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7489

المراجع

Fong YC, Khin AA, Lim CS. Determinants of natural rubber price instability for four major producing countries. Pertanika J Soc Sci Humanit. 2020; 28(2): 1179–97. http://www.pertanika.upm.edu.my/pjssh/browse/regular-issue?article=JSSH-5107-2019

Zhu Q, Zhang F, Liu S, Wu Y, Wang L. A hybrid VMD–BiGRU model for rubber futures time series forecasting. Appl Soft Comput J. 2019; 84. https://dx.doi.org/10.1016/j.asoc.2019.105739

Mah PJW, Buhary FN, Abdullah NH, Saad SAM. A Comparative study of univariate time series modelling for natural rubber production in Malaysia. Malaysian J Comput. 2018; 3(2): 108–18. https://ir.uitm.edu.my/id/eprint/43415/

Mathew S, Murugesan R. Indian natural rubber price forecast–An Autoregressive Integrated Moving Average (ARIMA) approach. Indian J Agric Sci. 2020; 90(2): 418–22. https://dx.doi.org/10.56093/ijas.v90i2.103067

Jong LJ, Ismail S, Mustapha A, Abd Wahab MH, Idrus SZS. The combination of autoregressive integrated moving average (ARIMA) and support vector machines (SVM) for daily rubber price forecasting. IOP Conf Ser Mater Sci Eng. 2020; 917(1). https://dx.doi.org/10.1088/1757-899X/917/1/012044

Norizan NFHBM, Yusof ZBM. Forecasting natural rubber price in Malaysia by 2030. Malays J Soc Sci and Hum. 2021; 6(9): 382–390. https://dx.doi.org/10.47405/mjssh.v6i9.986

Muda NZ, I SNI. Comparison of GBM, GFBM and MJD models in Malaysian rubber prices forecasting. Malaysian J Fundam Appl Sci. 2023; 19(1):73-81. https://dx.doi.org/10.11113/mjfas.v19n1.2763

Ramli N. Rubber Price Volatility and Inequality in Economic Development. In: Issues and Challenges in the Malaysian Economy. Bingley: Emerald Publishing Limited; 2019. p. 79–93. https://doi.org/10.1108/978-1-83867-479-320191006

Ramli N, Md Noor AHS, Sarmidi T, Said FF, Azam AHM. Modelling the volatility of rubber prices in ASEAN-3. Int J Bus and Soc. 2019; 20(1): 1–18. http://www.ijbs.unimas.my/index.php/volume-11-20/volume-20-no-1-2019/547-modelling-the-volatility-of-rubber-prices-in-asean-3

Cai G, Wu Z, Peng L. Forecasting volatility with outliers in Realized GARCH models. J Forecast. 2021; 40(4): 667–85. https://dx.doi.org/10.1002/for.2736

Carnero MA, Pérez A. Outliers and misleading leverage effect in asymmetric GARCH-type models. Stud Nonlinear Dyn Econom. 2021; 1–47. https://dx.doi.org/10.1515/snde-2018-0073

Aronne A, Grossi L, Bressan AA. Identifying outliers in asset pricing data with a new weighted forward search estimator. Rev Contab e Financ. 2020; 31(84): 458–72. https://dx.doi.org/10.1590/1808-057x201909620

Hotta LK, Trucíos C. Inference in (M)GARCH Models in the presence of additive outliers: specification, estimation, and prediction. In: Lavor C,Gomes FAM, editors. Adv Math Appl. Springer International Publishing; 2018 : 179–202. https://doi.org/10.1007/978-3-319-94015-1_8

Dutta A. Impacts of oil volatility shocks on metal markets: A research note. Resour Policy. 2018; 55: 9–19. https://dx.doi.org/10.1016/j.resourpol.2017.09.003

Wang J, Yang W, Du P, Niu T. Outlier-robust hybrid electricity price forecasting model for electricity market management. J Clean Prod. 2020; 249: 119318. https://dx.doi.org/10.1016/j.jclepro.2019.119318

Grossi L, Nan F. Robust forecasting of electricity prices: simulations, models and the impact of renewable sources. Technol Forecast Soc. 2019; 141: 305–318. https://dx.doi.org/10.1016/j.techfore.2019.01.006

Bachmann C, Tegtmeier L, Gebhardt J, Steinborn M. The “sell in May” effect: an empirical investigation of globally listed private equity markets. Manage Financ. 2019; 45(6): 793–808. https://dx.doi.org/10.1108/MF-07-2018-0322

da Cunha AS, Peixoto FC, Prata DM. Robust data reconciliation in chemical reactors. Comput Chem Eng. 2021;145. https://dx.doi.org/10.1016/j.compchemeng.2020.107170

de Menezes DQF, Prata DM, Secchi AR, Pinto JC. A review on robust M-estimators for regression analysis. Comput Chem Eng. 2021; 147: 107254. https://dx.doi.org/10.1016/j.compchemeng.2021.107254

Polat E. The effects of different weight functions on partial robust M-regression performance: A simulation study. Commun Stat Simul Comput. 2020; 49(4): 1089–104. https://dx.doi.org/10.1080/03610918.2019.1586926

Rousseeuw PJ, Croux C. Alternatives to the median absolute deviation. J Am Stat Assoc. 1993; 88(424): 1273–1283. https://dx.doi.org/10.1080/01621459.1993.10476408

Bollerslev T. Generalized autoregressive conditional heteroskedasticity. J Econometrics. 1986; 31(3): 307–327. https://www.sciencedirect.com/science/article/abs/pii/0304407686900631, https://dx.doi.org/10.1016/0304-4076(86)90063-1

Chowdhury KP. Supervised machine learning and heuristic algorithms for outlier detection in irregular spatiotemporal datasets. J Environ Inform. 2019; 33(1): 1–16. http://www.jeionline.org/index.php?journal=mys&page=article&op=view&path%5B%5D=201700375 https://dx.doi.org/10.3808/jei.201700375

Chakrabarty M, Ray P. Changes of base-year and Indian GDP growth: an agnostic look. Indian Growth Dev Rev. 2021; 14(3): 281–301. https://dx.doi.org/10.1108/IGDR-08-2020-0124

Adedoyin FF, Bekun F V., Driha OM, Balsalobre-Lorente D. The effects of air transportation, energy, ICT and FDI on economic growth in the industry 4.0 era: Evidence from the United States. Technol Forecast Soc Change. 2020; 160: 120297. https://dx.doi.org/10.1016/j.techfore.2020.120297

Byers JW, Popova I, Simkins BJ. Robust estimation of conditional risk measures using machine learning algorithm for commodity futures prices in the presence of outliers. J Commod Mark. 2021; 24: 100174. https://dx.doi.org/10.1016/j.jcomm.2021.100174 .

Chen C, Liu, L-M. Joint estimation of model parameters and outlier effects in time series. J Am Stat Assoc. 1993; 88(421): 284–297. https://dx.doi.org/10.1080/01621459.1993.10594321

Vinutha HP, Poornima B, Sagar BM. Detection of outliers using interquartile range technique from intrusion dataset. In: Satapathy, S., Tavares, J., Bhateja, V., Mohanty J, editors. Information and Decision Sciences, Advances in Intelligent Systems and Computing. Singapore: Springer; 2018. p. 511–518. https://doi.org/10.1007/978-981-10-7563-6_53

Jones PR. A note on detecting statistical outliers in psychophysical data. Attention, Perception, Psychophys. 2019; 81: 1189–96. https://doi.org/10.3758/s13414-019-01726-3

Singh D, Singh B. Investigating the impact of data normalization on classification performance. Appl Soft Comput. 2020; 97: 105524. https://dx.doi.org/10.1016/j.asoc.2019.105524

Ghani IMM, Rahim HA. Weighting temporary change outlier by modified Huber function with Monte Carlo simulations. J Phys Conf Ser. 2020; 1529. https://iopscience.iop.org/article/10.1088/1742-6596/1529/5/052050

Sakata S, White H. High Breakdown Point Conditional Dispersion Estimation with Application to S & P 500 Daily Returns Volatility. Econometrica. 1998; 66(3): 529–67. https://dx.doi.org/10.2307/2998574

Huber PJ. Robust Estimation of a location parameter. Ann Math Stat. 1964; 35(1): 73–101. https://www.jstor.org/stable/2238020 https://dx.doi.org/10.1214/aoms/1177703732

Akaike H. A new look at the statistical model identification. IEEE Trans. Automat Control. 1974; 19(6): 716-723. Available from: https://dx.doi.org/10.1109/TAC.1974.1100705

Juma AA, AL-Mohana FAM. A modified approach by using prediction to build a best threshold in ARX model with practical application. Baghdad Sci J. 2019; 16(4): 1049–63. https://dx.doi.org/10.21123/bsj.2019.16.4(Suppl.).1049

Yousif AH, Ali OA. Proposing robust LAD-Atan penalty of regression model estimation for high dimensional data. Baghdad Sci J. 2020 ; 17(2): 550–5. https://dx.doi.org/10.21123/bsj.2020.17.2.0550

Trapletti A, Hornik K. tseries: Time Series Analysis and Computational Finance R package version 0.10-51. 2022 [cited 2021 Aug 28]; 1-54. https://cran.r-project.org/web/packages/tseries/ .

Wuertz D, Setz T, Chalabi Y, Boudt C, Chausse P, Miklavoc M. fGarch: Rmetrics - Autoregressive conditional heteroskedastic modelling [Internet]. 2020 [cited 2021 Aug 28]: 1-51. https://cran.r-project.org/package=fGarch/

R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2021 [cited 2021 Aug 28]. https://www.r-project.org/ .

Phillips PCB, Perron P. Testing for a unit root in time series regression. Biometrika. 1988; 75(2): 335–346. https://dx.doi.org/10.2307/2336182

Dickey DA, Fuller WA. Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc. 1979; 74(366): 427–431. https://dx.doi.org/10.1080/01621459.1979.10482531

Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y. Testing the null hypothesis of stationarity against the alternative of a unit root. How sure are we that economic time series have a unit root? J Econom. 1992; 54(1–3): 159–178. https://dx.doi.org/10.1016/0304-4076(92)90104-Y

Engle RF. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica. 1982; 50(4): 987–1007. https://dx.doi.org/10.2307/1912773

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, et al. forecast: Forecasting functions for time series and linear models. 2020; [cited 2021 Aug 28]. https://cran.r-project.org/web/packages/forecast/

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.