العلاقة بين جينات pvc والغشاء الحيوي في العزلات السريرية لبكتريا الزائفة الزنجارية
محتوى المقالة الرئيسي
الملخص
pvcABCD هي مجموعة جينات متواجدة في بكتريا الزائفة الزنجارية, تم تصميم البحث لأختبار العلاقة بين تعبير جينات pvc مع جين cupB, الذي يلعب دور مهم في تطوير الغشاء الحيوي, وجين rhlR, الذي ينظم تعبير الجينات المرتبطة بالغشاء الحيوي, والتحقق من ما اذا كانت جينات pvc تكون مشغل واحد أو اثنان. تم تحقيق أهداف البحث عن طريق استخدام تقنية RT-qPCR لقياس التعبير الجيني للجينات المذكورة. وجد من بين 25 عزلة سريرية تم تشخيصها 21 عزلة تعود الى بكتريا الزائفة الزنجارية, حيث كانت 18(85.7%) عزلة مكونة للغشاء الحيوي: 10 (47.6%), 5(23.8%), 3(14.2%) كانت قوية , متوسطة وضعيفة التكوين للغشاء الحيوي على التوالي. بينما 3(14.2%) عزلات كانت غير مكونة للغشاء الحيوي. أظهرت مستويات التعبير الجيني لجينيّ pvcA, pvcB فرط في التعبير <)2fold ( في جميع العزلات المكونة للغشاء الحيوي. تم الحصول على نتائج مماثلة لجينيّ cupB, rhlR . بينما أظهرت نتائج تعبير جينيّ pvcC,pvcD نقص في التعبير <0.5 fold في هذه العزلات.تشير هذه النتائج الى أن جينات pvc منظمة في مشغلين pvcAB و pvcCD . وكانت الجينات المرتبطة بتكوين الغشاء الحيوي تنظم من قبل مشغل pvcAB. هذه هي الدراسة الأولى في العراق التي تتحقق من هذه الجينات.
Received 23/09/2022
Revised 30/12/2022
Accepted 02/01/2023
Published Online First 20/07/2023
تفاصيل المقالة

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Alkaabin SA. Bacterial Isolates and Their Antibiograms of Burn Wound Infections in Burns Specialist Hospital in Baghdad. Baghdad Sci.J. 2013; 10(2): 331-340. https://doi.org/10.21123/bsj.2013.10.2.331-340
Shehab ZH, Ahmed ST, Abdallah NM. Genetic variation of pilB gene in Pseudomonas aeruginosa isolated from Iraqi patients with burn infections. Ann. Trop. Med. Public Health. 2020; 23(16): 1-12. http://dx.doi.org/10.36295/ASRO.2020.231615
Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A. Metallo-β-lactamase- mediated resistance among clinical carbapenem- resistant Pseudomonas aeruginosa isolates in northern Iran: A potential threat to clinical therapeutics. Ci Ji Yi Xue Za Zhi. 2018; 30(2): 90–96. https://doi.org/10.4103/tcmj.tcmj_101_17
Eladawy M, El-Mowafy M, El-Sokkary MMA, Barwa R. Antimicrobial resistance and virulence characteristics in ERIC-PCR typed biofilm forming isolates of P. aeruginosa. Microb Pathog.2021; 158 :105042. https://doi.org/10.1016/j.micpath.2021.105042
Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infec Control. 2017 May 15; 6(1): 1-8. https://doi.org/10.1186/s13756-017-0208-x
Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018; 81(1): 7–11. https://doi.org/10.1016/j.jcma.2017.07.012
Qaisar U, Luo L, Haley CL, Brady SF, Carty NL, Colmer-Hamood JA, et al. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes. PloS One. 2013; 8(4): e62735. https://doi.org/10.1371/journal.pone.0062735
Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A. 2001; 98(12): 6911–6916. https://doi.org/10.1073/pnas.111551898
Vetrivel A, Ramasamy M, Vetrivel P, Natchimuthu S, Arunachalam S, Kim G-S, et al. Pseudomonas aeruginosa Biofilm Formation and Its Control. Biologics (Basel). 2021 Oct 15; 1(3): 312–36. https://doi.org/10.3390/biologics1030019
Clarke-Pearson MF, Brady SF. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. J Bacteriol. 2008; 190(20): 6927–6930. https://doi.org/10.1128/JB.00801-08
Brady SF, Bauer JD, Clarke-Pearson MF, Daniels R. Natural Products fromisnA-Containing Biosynthetic Gene Clusters Recovered from the Genomes of Cultured and Uncultured Bacteria. J Am Chem Soc. 2007; 129(40): 12102–12103. https://doi.org/10.1021/ja075492v
Stintzi A, Johnson Z, Stonehouse M, Ochsner U, Meyer J-M, Vasil ML, et al. The pvc Gene Cluster of Pseudomonas aeruginosa : Role in Synthesis of the Pyoverdine Chromophore and Regulation by PtxR and PvdS. J Bacteriol. 1999;181(13):4118–4124. https://doi.org/10.1128/JB.181.13.4118-4124.1999
Hillenbrand ME, Thompson PP, Shanks RMQ, Kowalski RP. Validation of PCR for the detection of Pseudomonas aeruginosa from corneal samples. Int J Ophthalmol. 2011; 4(3): 262–268. https://doi.org/10.3980/j.issn.2222-3959.2011.03.10
Sheikh AF, Ghanbari F, Afzali M, Shahin M. Isolation of Oxidase-Negative Pseudomonas aeruginosa from Various Specimens. Iran J Public Health. 2020; 49(6): 1186-1188. https://doi.org/10.18502/ijph.v49i6.3376
Lima JL da C, Alves LR, Paz JNP da, Rabelo MA, Maciel MAV, Morais MMC de. Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-associated pneumonia. Rev Bras Ter Intensiva. 2017; 29(3): 310-316. https://doi.org/10.5935/0103-507X.20170039
Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000 Apr; 40(2): 175–179. https://doi.org/10.1016/s0167-7012(00)00122-6
James S, Melvin P, April M, Shelley Campeau, Sharon K, Marcelo F, et al Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 32nd informational supplement; CLSI document M100-S32. Wayne: CLSI; 2022.
Augustyniak A, Cendrowski K, Grygorcewicz B, Jabłońska J, Nawrotek P, Trukawka M, et al. The Response of Pseudomonas aeruginosa PAO1 to UV-activated Titanium Dioxide/Silica Nanotubes. Int J Mol Sci. 2020 Oct 20; 21(20): 7748. https://doi.org/10.3390/ijms21207748
Al-Taai ME, Aziz IH, Marhoon AA. Identification Pseudomonas aeruginosa by 16s rRNA gene for Differentiation from Other Pseudomonas Species that isolated from Patients and environment. Baghdad Sci.J. 2014; 11 (2): 1028–1034. https://doi.org/10.21123/bsj.2014.11.2.1028-1034
Al-Tememe T, Abbas B. Molecular Detection and Phylogenetic Analysis of Pseudomonas aeruginosa Isolated from Some Infected and Healthy Ruminants in Basrah, Iraq. Arch Razi Inst. 2022; 77(2): 537-544. https://doi.org/10.22092/ARI.2022.357802.2099
AL-Shimmary SM. Comparison the molecular and conventional identification of Pseudomonas aeruginosa isolated from diabetes type II and other diseases. Msc [Dissertation]. Baghdad. Baghdad University. 2016. https://doi.org/10.13140/RG.2.2.36640.81927
Golpayegani A, Nodehi RN, Rezaei F, Alimohammadi M, Douraghi M. Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates. Mol Biol Rep. 2019; 46(4): 4049–4061. https://doi.org/10.1007/s11033-019-04855-y
Chen J-W, Lau YY, Krishnan T, Chan K-G, Chang C-Y. Recent advances in molecular diagnosis of pseudomonasaeruginosa infection by state-of-the-art genotyping techniques. Front Microbiol. 2018; 9: 1-8 https://doi.org/10.3389/fmicb.2018.01104.
Hassan KI, Abdullah SR. Detection of Pseudomonas aeruginosain Clinical Samples Using PCR Targeting ETA and gyrB Genes. Baghdad Sci. J. 2018; 15(4): 401-405. https://doi.org/10.21123/bsj.2018.15.4.0401
Gürtler V, Subrahmanyam G, Shekar M, Maiti B, Karunasagar I.: Chaptere 12 Bacterial Typing and Identification by Genomic Analysis of 16S–23S rRNA Intergenic Transcribed Spacer (ITS) Sequences. Methods Microbiol. 2014; 41: 253- 274. https://doi.org/10.1016/bs.mim.2014.07.004
Perez LRR, Machado ABMP, Barth AL. The Presence of Quorum-Sensing Genes in Pseudomonas isolates Infecting Cystic Fibrosis and Non-cystic Fibrosis Patients. Curr Microbiol. 2013; 66(4): 418–420. https://doi.org/10.1007/s00284-012-0290-5
Lima JL da C, Alves LR, Jacomé PRL de A, Bezerra Neto JP, Maciel MAV, Morais MMC de. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis. 2018; 22(2): 129–136. https://doi.org/10.1016/j.bjid.2018.03.003
Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm- related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020; 13(1): 1-6. https://doi.org/10.1186/s13104-020-4890-z
Ratajczak M, Kamińska D, Nowak-Malczewska D, Schneider A, Dlugaszewska J. Relationship between antibiotic resistance, biofilm formation, genes coding virulence factors and source of origin of Pseudomonas aeruginosa clinical strains. Ann Agric Environ Med. 2020; 28(2): 306-313. https://doi.org/10.26444/aaem/122682
Alzubaidy MW, Almohaidi AM, Sultan AA, AL- Shimmary SM. Virulence gene of Pseudomonas aeruginosa with nanoparticle. AIP Conf Proc.2019; https://doi.org/10.1063/1.5116966.
Khodair ZT, Alzubaidy MW, Almohaidi AM, Sultan AA, AL-Shimmary SM, Albusultan SS. Synthesis of copper oxide nanoparticles (CuO-NPs) and its evaluation of antibacterial activity against P. aeruginosa biofilm genes. AIP Conf Proc. 2019; https://doi.org/10.1063/1.5138492.
Da Silva Carvalho T, Rodrigues Perez LR. Impact of biofilm production on polymyxin B susceptibility among Pseudomonas aeruginosa clinical isolates. Infect Control Hosp Epidemiol. 2019; 40(6): 739–740. https://doi.org/10.1017/ice.2019.85
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018; 18(3): 318–327.https://doi.org/10.1016/S1473-3099(17)30753-3
Jones RN, Guzman-Blanco M, Gales AC, Gallegos B, Castro ALL, Martino MDV, et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis. 2013; 17(6): 672–681. https://doi.org/10.1016/j.bjid.2013.07.002
Teixeira B, Rodulfo H, Carreño N, Guzmán M, Salazar E, Donato MD. Aminoglycoside Resistance Genes in Pseudomonas aeruginosa isolates from Cumana, Venezuela. Rev Inst Med Trop Sao Paulo. 2016; 58(13): 1-5. https://doi.org/10.1590/S1678-9946201658013
Rosenthal VD, Duszynska W, Ider B-E, Gurskis V, Al-Ruzzieh MA, Myatra SN, et al. International Nosocomial Infection Control Consortium (INICC) report, data summary of 45 countries for 2013-2018, Adult and Pediatric Units, Device-associated Module. Am J Infect Control. 2021; 49(10): 1267–1274. https://doi.org/10.1016/j.ajic.2021.04.077
Hussain ZM, Kadhim HS, Hassan JS. Detection of New Delhi Metallo-Beta-Lactamase-1 (blaNDM-1) in Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Clinical Samples in Wasit Hospitals. Iraqi JMS. 2018; 16(3): 239-246. https://doi.org/10.22578/IJMS.16.3.3.
Alhusseini LB, Maleki A, Kouhsari E, Ghafourian S, Mahmoudi M, Al Marjani MF. Evaluation of type II toxin-antitoxin systems, antibiotic resistance, and biofilm production in clinical MDR Pseudomonas aeruginosa isolates in Iraq. Gene Rep. 2019; 17: 100546. https://doi.org/10.1016/j.genrep.2019.100546
Vaněrková M, Mališová B, Kotásková I, Holá V, Růžička F, Freiberger T. Biofilm formation, antibiotic susceptibility and RAPD genotypes in Pseudomonas aeruginosa clinical strains isolated from single centre intensive care unit patients. Folia Microbiol (Praha). 2017; 62(6): 531–538. https://doi.org/10.1007/s12223-017-0526-7
Yekani M, Memar M, Alizadeh N, Safaei N, Ghotaslou R. Antibiotic Resistance Patterns of Biofilm-Forming Pseudomonas aeruginosa Isolates from Mechanically Ventilated Patients. Int J Sci Study. 2017; 84: 84. https://doi.org/10.17354/ijssI/2017/106
Vipin CK. Biotechnological applications of quorum sensing inhibitors. 1st ed. Singapore: Springer Singapore; 2018. https://doi.org/10.1007/978-981-10-9026-4
Markus V, Golberg K, Teralı K, Ozer N, Kramarsky-Winter E, Marks RS, et al. Assessing the Molecular Targets and Mode of Action of Furanone C-30 on Pseudomonas aeruginosa Quorum Sensing. Molecules. 2021 Mar15; 26(6): 1-14. https://doi.org/10.3390/molecules26061620
Pournajaf A, Razavi S, Irajian G, Ardebili A, Erfani Y, Solgi S, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018; 26(3): 226–236. https://pubmed.ncbi.nlm.nih.gov/30246765/
Hou W, Sun X, Wang Z, Zhang Y. Biofilm- Forming Capacity of Staphylococcus epidermidis , Staphylococcus aureus , and Pseudomonas aeruginosa from Ocular Infections. Invest Ophthalmol Vis Sci. 2012; 53(9): 5624–5631. https://doi.org/10.1167/iovs.11-9114
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol J. 2017; 11(1): 53–62. https://doi.org/10.2174/1874285801711010053
Clark DP, Nanette JP, Mcgehee MR. Molecular biology, 3rd Edition. Amsterdam: Academic Cell. 2019. https://doi.org/10.1016/C2015-0-06229-3
Ugwuanyi FC, Ajayi A, Ojo DA, Adeleye AI, Smith SI. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann Clin Microbiol Antimicrob. 2021; 20(1): 11. https://doi.org/10.1186/s12941-021-00417-y