دراسة التأصر الكيميائي للعنقود ثلاثي النوى المحتوي على الكوبالت و الروثينيوم: [(Cp*Co) (Cp Ru)2 (μ3-H) (μ-H)3] باستخدام نهج QTAIM
محتوى المقالة الرئيسي
الملخص
المعلمات الطوبولوجية لتأثرات بين معدن-معدن ومعدن-ليكاند في العنقودي ثلاثي النوى رباعي الهيدريد [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3]1 (Cp* = η5 -C5Me4Et), (Cp = η5 -C5Me5)، باستخدام نظرية الكم للذرات في الجزيئات .(QTAIM) خصائص النقاط الحرجة لاواصر مثل مؤشرات إلغاء تحديد الموقع δ (A, B) ، كثافة الإلكترونρ(r) ، كثافة الطاقة الحركية المحليةG(r) ، (Laplacian) لكثافة الإلكترون ∇2ρ(r)، كثافة الطاقة المحليةH(r) ، وكثافة الطاقة الكامنة المحلية V(r) والإهليلجيه ε(r) تمت مقارنتها بالبيانات مع دراسات للانظمة العضوية المعدنية السابقة. أصبحت مقارنة العمليات الطوبولوجية لتفاعلات الذرة والذرة المختلفة ممكنة بفضل هذه النتائج. في قلب مجموعة رباعي هيدرات المعادن غير المتجانسة ، الجزء Ru2CoH4 ، تُظهر الحسابات عدم وجود أي نقاط حرجة للتأصر (BCP) أو مسارات الاواصر (BPs) بين Ru-Ru و Ru-Co يتم تحديد توزيع كثافات الإلكترون من خلال موضع تجسير ذرات هيدريد المنسقة مع Ru-Ru و Ru-Co ، وهذا له تأثير كبير على تكوين الاواصر بين ذرات المعدن الانتقالي. من ناحية أخرى ، تؤكد النتائج أن المركب قيد الدراسة يحتوي على تفاعل تأصر 7c–11e غير محدد على M3H4 ، كما هو موضح في حسابات مؤشر إلغاء تحديد الموقع غير المهملة. تظهر القيم الصغيرة لكثافة الإلكترون ρ(b) فوق الصفر ، جنبًا إلى جنب مع القيم الصغيرة ، مرة أخرى فوق الصفر ، لـ Laplacian ∇2ρ(b) والقيم الإيجابية الصغيرة لكثافة الطاقة الإجماليةH(b) ، في تأصر Co-H و Ru-H تعتبر اواصر H في هذه المجموعة نموذجية لتفاعلات الغلاف المفتوح. أيضًا ، تتشابه البيانات الطوبولوجية لتفاعلات الاواصر بين ذرات المعدن Co و Ru مع ذرات C حلقة cyclopentadienyl Cp. تظهر خصائص مشابهة جدًا لتفاعلات الغلاف المفتوح في تصنيف QTAIM.
Received 12/02/2023,
Revised 09/10/2022,
Accepted 11/10/2022,
Published 20/06/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Cheng X, Lei A, Mei TS, Xu HC, Xu K, Zeng C. Recent Applications of Homogeneous Catalysis in Electrochemical Organic Synthesis. CCS Chem. 2022;4(4):1120-52. https://dx.doi.org/10.31635/ccschem.021.202101451
Muhsen Al-Ibadi MA, Taha A, Hasan Duraid AH, Alkanabi T. A theoretical investigation on chemical bonding of the bridged hydride triruthenium cluster: [Ru3 (μ-H)(μ3-κ2-hamphox-N,N)(CO)9]. Baghdad Sci J. 2020;17(2):488-93. https://dx.doi.org/10.21123/bsj.2020.17.2.0488
Chikamori H, Tahara A, Takao T. Transformation of a μ3-Benzyne Ligand into Phenol on a Cationic Triruthenium Cluster Supported by a μ3-Sulfido Ligand. Organometallics 2018;38(2):527-35. https://dx.doi.org/10.1021/acs.organomet.8b00832
Takao T, Suzuki H, Shimogawa R. Syntheses and properties of triruthenium polyhydrido complexes composed of 1,2,4-tri-tert-butylcyclopentadienyl and p-Cymene ruthenium units. Organometallics 2021;40(9):1303-13. https://dx.doi.org/10.1021/acs.organomet.1c00094
Daniels C, Gi E, Atterberry B, Blome-Fernández R, Rossini A, Vela J. Phosphine Ligand Binding and Catalytic Activity of Group 10–14 Heterobimetallic Complexes. Inorg Chem. 2022;61(18):6888-97. https://dx.doi.org/10.1021/acs.inorgchem.2c00229
AL-Nafee, M. Metal-Metal Bonding in Poly-Metallic Systems. PhD thesis, University of Oxford, 2019. https://ora.ox.ac.uk/objects/uuid:95f6c115-e1de-40b3-8f0b-eb6ce93e78b0
Kaneko T, Takao T. Reaction of a Triruthenium μ3-Borylene Complex with Benzonitrile: Formation of a μ3-η3-BCN Ring on a Cationic Ru3 Plane via Photo-Induced Intramolecular Borylene Transfer. Organometallics 2020;39(4):593-604. https://dx.doi.org/10.1021/acs.organomet.9b00831
Bader RFW. Atoms in Molecules A Quantum Theory. Oxford science publications. Clarendon Press; 1900. 438p. https://books.google.iq/books?id=up1pQgAACAAJ
Rampino S. Chemistry at the Frontier with Physics and Computer Science. Elsevier; 2022. Chap 14, The atom and the bond; p. 151-66. https://dx.doi.org/10.1016/b978-0-32-390865-8.00024-6
Wen L, Li G, Yang LM, Pan H, Ganz E. The structures, electronic properties, and chemical bonding of binary alloy boron–aluminum clusters series B4Aln0/−/+ (n = 1–5). Mater Today Commun. 2020;24(1):100914. https://dx.doi.org/10.1016/J.MTCOMM.2020.100914
van der Maelen JF, Ceroni M, Ruiz J. The X-ray constrained wavefunction of the [Mn(CO)4{(C6H5)2P-S-C(Br2)-P(C6H5)2}]Br complex: A theoretical and experimental study of dihalogen bonds and other noncovalent interactions. Acta. Crystallogr. B. Struct Sci Cryst Eng Mater. 2020;76(5): 802-814. https://dx.doi.org/10.1107/S2052520620009889
Malloum A, Conradie J. QTAIM analysis dataset for non-covalent interactions in furan clusters. Data Br. 2022;40(1):107766. https://dx.doi.org/10.1016/j.dib.2021.107766
Attia AS, Alfallous KA, El-Shahat MF. A novel quinoxalinedione-bicapped tri-ruthenium carbonyl cluster [Ru3(μ-H)2(CO)6(μ3-HDCQX)2]: synthesis, characterization, anticancer activity and theoretical investigation of Ru–Ru and Ru–Ligand bonding interactions. Polyhedron 2021;193(1):114889. https://dx.doi.org/10.1016/j.poly.2020.114889
Nagaoka M, Takao T, Suzuki H. Synthesis of a heterometallic trinuclear cluster containing ruthenium and cobalt and its reactivity with internal alkynes. Organometallics 2012;31(18):6547-54. https://dx.doi.org/10.1021/om300371g
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, program, Revision A.02. Gaussian, Inc. Wallingford 2016. https://gaussian.com/g09citation/
Hirva P, Haukka M, Jakonen M, Moreno MA. DFT tests for group 8 transition metal carbonyl complexes. J Mol Model. 2008;14(3):171-81.
Biegler-König F, Schönbohm J. AIM2000. J Comput Chem. 2002;22(1):545-559. https://doi.org/10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y .
Al-Ibadi MAM, Alkurbasy NE, Alhimidi SRH. The topological classification of the bonding in[(Cp’Ru)2 (Cp’Os)(μ3-N)2(μ-H)3] cluster. AIP Conf Proc. 2019;2144(1):20009. https://dx.doi.org/10.1063/1.5123066
Alhimidi SRH, Al-Ibadi MAM, Hasan AH, Taha A. The QTAIM Approach to Chemical Bonding in Triruthenium Carbonyl Cluster:[Ru3 (μ-H)(μ3-κ2-Haminox-N, N)(CO) 9]. J Phys. 2018;1032(1):12068.
Al-Ibadi MAM, Oraibi DT, Hasan AH. The ruthenium-ruthenium bonding in bridged ligand system: QTAIM study of [Ru3(μ3-κ2-MeimCh) (μ-CO) (CO)9] complex. AIP Conf Proc. 2019;2144(1):20008. https://dx.doi.org/10.1063/1.5123065
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys. 1999;110(13):6158.
Yang X, Chin RM, Hall MB. Protonating metal-metal bonds: Changing the metal-metal interaction from bonding, to nonbonding, and to antibonding. Polyhedron 2022;212(1):115585. https://dx.doi.org/10.1016/j.poly.2021.115585
Cesari C, Bortoluzzi M, Forti F, Gubbels L, Femoni C, Iapalucci MC, et al. 2-D Molecular Alloy Ru–M (M = Cu, Ag, and Au) Carbonyl Clusters: Synthesis, Molecular Structure, Catalysis, and Computational Studies. Inorg Chem Published online September. 2022;61(37):14726–14741. https://dx.doi.org/10.1021/ACS.INORGCHEM.2C02099
Ruiz J, Sol D, Garciá L, Mateo MA, Vivanco M, Van Der Maelen JF. Generation and Tunable Cyclization of Formamidinate Ligands in Carbonyl Complexes of Mn(I): An Experimental and Theoretical Study. Organometallics. 2019;38(4):916–925. https://dx.doi.org/10.1021/acs.organomet.8b00898
Flierler U, Burzler M, Leusser D, Henn J, Ott H, Braunschweig H, et al. Electron-density investigation of Metal–Metal bonding in the dinuclear “Borylene” complex [Cp(CO)2Mn2(μ-BtBu)]. Angew Chem Int Ed Engl. 2008;47(23):4321–4325. https://dx.doi.org/10.1002/anie.200705257
Overgaard J, Clausen HF, Platts JA, Iversen BB. Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. J Am Chem Soc. 2008;130(12):3834-43.
Domagała M, Lutyńska A, Palusiak M. Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge. J Phys Chem A. 2018;122(24):5484-92. https://dx.doi.org/10.1021/acs.jpca.8b03735
Prasad Kuntar S, Ghosh A, K. Ghanty T. Superstrong Chemical Bonding of Noble Gases with Oxidoboron (BO+) and Sulfidoboron (BS+). J Phys Chem A. 2022 126(43) 7888–7900. https://dx.doi.org/10.1021/acs.jpca.2c05554
Korabel’nikov D V, Zhuravlev YN. The nature of the chemical bond in oxyanionic crystals based on QTAIM topological analysis of electron densities. RSC Adv 2019;9(21):12020-12033. https://dx.doi.org/10.1039/c9ra01403a
Anil Kumar GN, Shruthi DL. The nature of the chemical bond in sodium tungstate based on ab initio, DFT and QTAIM topological analysis of electron density. Mater Today Proc Elsevier. 2021;44(8):3127-32. https://dx.doi.org/10.1016/j.matpr.2021.02.810
van der Maelen JF, Brugos J, García-Álvarez P, Cabeza JA. Two octahedral σ-borane metal (MnI and RuII) complexes containing a tripod κ3N,H,H-ligand: Synthesis, structural characterization, and theoretical topological study of the charge density. J Mol Struct. 2020;1201(127217):127217. https://dx.doi.org/10.1016/j.molstruc.2019.127217
F. Van der Maelen J. Topological Analysis of the Electron Density in the Carbonyl Complexes M(CO)8 (M = Ca, Sr, Ba). Organometallics 2019;39(1):132-41. https://dx.doi.org/10.1021/acs.organomet.9b00699
Gadre SR, Suresh CH, Mohan N, Kuznetsov ML. molecules Electrostatic Potential Topology for Probing Molecular Structure Bonding and Reactivity. Molecules 2021;26(11):3289. https://dx.doi.org/10.3390/molecules26113289
Van der Maelen JF, Cabeza JA. A topological analysis of the bonding in [M2(CO)10] and [M3(μ-H)3(CO)12] complexes (M = Mn, Tc, Re). Theor Chem Acc. 2016;135(3):1-11. https://dx.doi.org/10.1007/s00214-016-1821-0
Maelen JF van der, García-granda S, Cabeza JA. Theoretical topological analysis of the electron density in a series of triosmium carbonyl clusters: [Os3(CO)12], [Os3(μ-H)2(CO)10], [Os3(μ-H)(μ-OH)(CO)10] and [Os3(μ-H)(μ-Cl)(CO)10]. Comput Theor Chem. 2011;968(1-3):55-63. https://dx.doi.org/10.1016/j.comptc.2011.05.003
Feliz M, Llusar R, Andrés J, Berski S, Silvi B. Topological analysis of the bonds in incomplete cuboidal [Mo 3 S 4] clusters. New J Chem. 2002;26(7):844-50.
Nishide T, Hayashi S. Intrinsic Dynamic and Static Nature of π···π Interactions in Fused Benzene-Type Helicenes and Dimers, Elucidated with QTAIM Dual Functional Analysis. J Nanomater. 2022;12(3):321. https://dx.doi.org/10.3390/NANO12030321
Al-Kirbasee NE, Alhimidi SRH, Al-Ibadi MAM. QTAIM study of the bonding in triosmium trihydride cluster [Os3(μ-H)3(μ3-É2-CC7H3(2-CH3)NS)(CO)8]. Baghdad Sci J. 2021;18(4):1279-85. https://dx.doi.org/10.21123/BSJ.2021.18.4.1279
Van der Maelen JF, Gutiérrez-Puebla E, Monge A, García-Granda S, Resa I, Carmona E, et al. Experimental and theoretical characterization of the Zn—Zn bond in [Zn2 (η5-C5Me5) 2]. Acta Crystallogr B. 2007;63(6):862-8.
Helal SR, Al-Ibadi MAM, Hasan AH, Taha A. The QTAIM Approach to Chemical Bonding in Triruthenium Carbonyl Cluster: [Ru3 (μ-H)(μ 3-κ 2-Haminox-N,N)(CO)9]. J Phys Conf Ser. 2018;1032(1):12068. https://dx.doi.org/10.1088/1742-6596/1032/1/012068
Isaac C, Wilson C, Burnage A, Miloserdov M, Mahon M, Macgregor S, et al. Experimental and Computational Studies of Ruthenium Complexes Bearing Z-Acceptor Aluminum-Based Phosphine Pincer Ligands Inorg Chem. 2022;61(50):20690–20698. https://dx.doi.org/10.1021/acs.inorgchem.2c03665
Mercero JM, Ugalde JM. Atomic Clusters with Unusual Structure, Bonding and Reactivity. 1st Ed. Chap 2, Elsevier. Electron delocalization in clusters; 2022. p. 19-39. https://dx.doi.org/10.1016/B978-0-12-822943-9.00013-9
Bartashevich E v., Mukhitdinova SE, Tsirelson VG. Bond orders and electron delocalization indices for S–N, S–C and S–S bonds in 1,2,3-dithiazole systems. Mendeleev Commun. 2021;31(5):680-3. https://dx.doi.org/10.1016/j.mencom.2021.09.029
Cabeza JA, Van Der Maelen JF, Garcia-Granda S. Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3(μ-H)2(μ3- MeImCH)(CO)9] (Me2im = l,3-dimethylimidazol-2-ylidene). Organometallics 2009;28(13):3666-72. https://dx.doi.org/10.1021/om9000617
Al-Ibadi MAM, Kzar KO. Theoretical study of Fe-Fe bonding in a series of iron carbonyl clusters [(µ-H)2Fe3(CO)9(µ3-As)Mn(CO)5], [Et4N] [(µ-H)2Fe3(CO)9(µ3-As)Fe(CO)4] and [Et4N][HAs{Fe2(CO)6(µ-CO) (µ-H)}{Fe(CO)4}] by QTAIM perspective. Egypt J Chem. 2020;63(8):2911-20. https://dx.doi.org/10.21608/ejchem.2020.21235.2267
Macchi P, Donghi D, Sironi A. The electron density of bridging hydrides observed via experimental and theoretical investigations on [Cr2(μ2-H)(Co) 10]-. J Am Chem Soc. 2005;127(47):16494-504. https://dx.doi.org/10.1021/ja055308a