تصنيع الجسيمات النانويه لاوكسيد السلينيوم من مستخلص القرفه :خصائصه البصرية وتطبيقاته
DOI:
https://doi.org/10.21123/bsj.2024.8208الكلمات المفتاحية:
الفعالية ضد المايكروبات – التصنيع الحيوي – الطريقة الخضراء –اوكسيد السلينيوم –الاشريكيه القولونيهالملخص
حظي التصنيع الحيوي للجسيمات النانوية باهتمام واسع النطاق بسبب فوائده مثل البساطة والملائمة للبيئة والسرعة والفعالية من حيث التكلفة. تم تصنيع جسيمات السيلينيوم النانوية SeO2NPs) باستخدام مستخلصات لحاء القرفة ((CVBE ورباعي كلوريد السيلينيوم. في هذه الدراسة ,تم استخدام تقنيات XRD و TEM و UV و FTIR لتوصيف SeO2 NPs المُصنَّع بيولوجيًا, البنية البلوريه لها تكون سداسية كما يتضح من نتائج الاشعه السينية . تم تحقيق الحجم البلوري حوالي 24.5 نانومتر وأظهرت صورة TEM أن قطر SeO2 كان أقل من 100 نانومتر بشكل كروي وشبه كروي. كان تأثير SeO2 على مضادات الفطريات وأنواع مختلفة من البكتيريا موضوع هذا البحث. SeO2 كمثبط لنشاط المكورات العنقودية مقابل 23 ملم ونشاط المكورات العنقودية الذهبية مقابل 21 ملم ، وكذلك العزلات المضادة للفطريات 18 ملم ، والتي كانت أكثر فعالية من البكتيرية Klebsiella Sp. والإشريكية القولونية.
Received 29/12/2022
Revised 12/07/2024
Accepted 14/07/2024
Published Online First 20/10/2024
المراجع
Bibi I, Kamal S, Ahmed A, Iqbal M, Nouren S, Jilani K , et al .Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation. Int J Biol Macromole. 2017; 103: 783-790.https://doi.org/10.1016/j.ijbiomac.2017.05.023
Abed FG, Jubeir NJ, Al Ogaili HAT. Study Effect of the concentration of Iron on the Synthesized Zinc Oxide via the plant extract of beetroot. AIP Conf Proc. 2024; 2922(1): 040006 https://doi.org/10.1063/5.0183132
Alijani H Q, Pourseyedi S, Mahani M T, Khatami M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J Mol Struct. 2019; 1175: 214-218. https://doi.org/10.1016/j.molstruc.2018.07.103
Nava O J, Luque PA, Gómez-Gutiérrez C.M., Vilchis-Nestor A.R., Castro-Beltrán A., Mota-González M., et.al. Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis. J Mol Struct. 2017; 1134: 121-125. https://doi.org/10.1016/j.molstruc.2016.12.069
Reddy K.R., Green synthesis, morphological and optical studies of CuO nanoparticles. J Mol Struct. 2017; 1150: 553-557. https://doi.org/10.1016/j.molstruc.2017.09.005
Sabouri Z, Akbari A, Hosseini H A, Darroudi M. Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J Mol Struct. 2018; 1173: 931-936. https://doi.org/10.1016/j.molstruc.2018.07.063
Arshad M, Hussain T, Iqbal M, Abbas M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazil J Microbiol. 2017; 48. https://doi.org/10.1016/j.bjm.2017.02.003
Arshad M, Qayyum A A G, Haider R. Iqbal M, Nazir A. Influence of different solvents on portrayal and photocatalytic activity of tin-doped zinc oxide nanoparticles. J Mol Liq. 2018; 260:272-278. https://doi.org/10.1016/J.MOLLIQ.2018.03.074
Ashar A, Iqbal M, Bhatti IA, Ahmad MZ, Qureshi K, Nisar J, et al. Synthesis, 318 characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol 319 ethoxylate degradation under UV and solar irradiation. J Alloy Comp. 2016; 678: 126-136. http://dx.doi.org/10.1016%2Fj.jallcom.2016.03.251
Shahab-ud-Din, Ahmad MZ, Qureshi K, Bhatti IA, Zahid M, Nisar J ,etal . Hydrothermal synthesis of molybdenum trioxide, characterization and photocatalytic activity. Mater Res Bull. 2018; 100: 120-130. https://doi.org/10.1021/jp0684628.
Nazar N, Bibi I, Kamal S, Iqbal M, Nouren S, Jalani K, et al. Cu nanoparticles synthesis using a biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. Int J Biol Macromol. 2017; 106: 326. https://doi.org/10.1016/j.molliq.2018.02.034
Igwe OU, Nwamezie F. Green synthesis of iron nanoparticles using flower extract of Piliostigma thonningii and the antibacterial activity evaluation. Chem Int. 2018; 4: 60-66. http://www.bosaljournals/chemint/
Prabu H J, Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Modern Sci. 2015; 1: 237-246. https://doi.org/10.1016/j.kijoms.2015.12.003
Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE. Microwave assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain Chem Eng. 2013; 2: 367-376. https://doi.org/10.1021/sc4003664.
Aragão AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araújo MC, Santiago JD ,et al. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem. 2016 12(1): 4182-4188. http://dx.doi.org/10.1016/j.arabjc.2016.04.014
Ahmed S, Ahmad M, Swami B L, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016; 7: 17-28 https://doi.org/10.1016/j.jare.2015.02.007
Huh AJ, Kwon YJ. Nano antibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control. Release. 2011; 156: 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002
Li W, Dong K, Ren J, Qu X. A Lactamase-imprinted responsive hydrogel for the treatment of antibiotic-resistant bacteria. Angew Chem Int Ed Engl. 2016; 55 (28): 8049–8053. https://doi.org/10.1002/anie.201600205
Fan W, Tong Farn X, Yu B, Zhao Y. CO2-responsive polymer single-chain nanoparticles and self-assembly for gas-tunable nanoreactors. Chem Mater. 2017; 29: 5693–5701. https://doi.org/10.1021/acs.chemmater.7b01656
Wu Y, Song Z, Wang H, Han H., Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat Commun. 2019; 10: 1–10. https://doi.org/10.1038/s41467-019-12233-2
Ales Panácek, Milan K , Renata V, Robert P, Jana S, et al. Antifungal activity of silver nanoparticle against Candida spp. Biomaterials. 2009; 30: 6333–6340. https://doi.org/10.1016/j.biomaterials.2009.07.065
Monireh K, Alireza A, Hossein Z, Saman S, Zahra S. Mehrdad K, et al. Evaluation of Antifungal and Photocatalytic Activities of Gelatin‑Stabilized Selenium Oxide Nanoparticles. J Inorg Organomet Polym Mater. 2020; 30(38): 3036–3044. https://link.springer.com/article/10.1007/s10904-020-01462-4
Soumya M, Venkat K S. Cytotoxicity Analysis of Biosynthesized Selenium Nanoparticles Towards a Lung Cancer Cell Line. J Inorg Organomet Polym Mater. 2019; 30(4): 1852–1864. https://link.springer.com/article/10.1007/s10904-019-01409-4
Vetrivel C, Durairaj K, Kalaimurugan D, Viji M, Murugesh E, Wen C L, et al. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep. 2021; 11: 1032 https://doi.org/10.1038/s41598-020-80327-9
Rahi S K, Hassoni M H, Abd A N. Study effect of reinforcement and moisture on the impact strength of hybrid and single polymeric composites. J Eng applied Sci. 2018; 13(18): 7624–7629 http://dx.doi.org/10.36478/jeasci.2018.7624.7629
Hassanien R, Abed‐ Elmageed AA, Husein DZ. Eco-Friendly Approach to Synthesize Selenium Nanoparticles: Photocatalytic Degradation of Sunset Yellow Azo Dye and Anticancer Activity. Chem Sel. 2019; 4(31): 9018-9026. https://doi.org/10.1002/SLCT.201901267
Abbas SI, Thjeel Al Ogaili HAA. Nonlinear optical characteristics of chemical bath-deposited pure and Cu-doped SnO2 thin films: A comparative evaluation. Resu. Opt.. 2023; 13: 100529 https://doi.org/10.1016/j.rio.2023.100529
Maria S J, Joseph A N, Kesava P R, Alessio M, Gabriele G, Antonino Natalello, et al. Synthesis of Bioactive Silver Nanoparticles by a Pseudomonas Strain Associated with the Antarctic Psychrophilic Protozoon Euplotes focardii. Mar Drugs. 2020; 18(38): 1-13. http://dx.doi.org/10.3390/md18010038
Al- Ogaili HAT, Al-Wardy RA. Thermal analysis for stability the nanocrystals ZnSe(diamantane) J Phys: Conf Ser. 2020; 1591(1): 012008 https://doi.org/10.1088/1742-6596/1591/1/012008
Abd A N, Abdullah M T, Rahi S K, Habubi N F. CdO/FTO Schottky photodetector with enhanced spectral responsivity and Specific detectivity prepared by electrolysis method. J Phys: Conf Ser. 2020; 1660(1): 012047. https://doi.org/10.1088/1742-6596/1660/1/012047
Rahi S K, Hahamd W I, Thakir H N. Influence of the thermal annealing on properties of cadmium sulfide: Cupper 10%thin films and solar cell application. Mater Today Proc. 2021; 47: 6192-6196. https://doi.org/10.1016/j.matpr.2021.05.15
Zainab J S, Sabah M H, Sabeeha K S. Structural Analysis of Chemical and Green Synthesis of CuO Nanoparticles and their Effect on Biofilm. Baghdad Sci J. 2018; 15(2): 211. http://dx.doi.org/10.21123/bsj.2018.15.2.0211
Al Ogaili HAT, Abbas SI, Mohammed M A. Raman spectra and electronic features for nanotubes of znsse wurtziod: Ab-initio. Chalcogenide Lett. 2020; 17(5): 251–255. https://chalcogen.ro/251_OgailiHAT.pdf
Ahmed K H, Mohammed A A , Imad ML. A Green Synthesis of Iron/Copper Nanoparticles as a Catalytic of Fenton-like Reactions for Removal of Orange G Dye. Baghdad Sci J. 2022; 19(6): 6508. https://dx.doi.org/10.21123.
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Saad Khalid Rahi Rahi, Rusul Adnan Al-Wardy, Hanan Abd Ali Thjeel Al Ogaili
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.