The Fabrication of SeO2 Nanoparticles from Cinnamon extract: Optical properties and its application

Authors

  • Saad Khalid Rahi Rahi Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
  • Rusul Adnan Al-Wardy Department of clinical laboratory science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
  • Hanan Abd Ali Thjeel Al Ogaili Department of Physics,College of Science, Wasit University, Wasit, Iraq https://orcid.org/0000-0003-1016-866X

DOI:

https://doi.org/10.21123/bsj.2024.8208

Keywords:

Biosynthesis; SeO2, Antimicrobial activity, Staphylococcus

Abstract

Nanoparticle biogenic synthesis (NP) has attained widespread interest due to its benefits such as simplicity, environmental friendliness, rapidity and cost-effectiveness. Selenium nanoparticles (SeO2NPs) were synthesized utilizing Cinnamomum verum bark extracts (CVBE) and selenium tetrachloride. In this study.  XRD, TEM, UV and FTIR techniques were used to characterize the biosynthesized SeO2 NPs. The crystal structure of SeO2-NPs is hexagonal as evidenced by XRD results. The crystalline size was achieved at about 24.5 nm and the TEM image showed that the diameter of SeO2 was less than 100 nm with spherical and semi-spherical shapes. The effect of SeO2 on antifungal and diverse types of bacteria was the subject of this investigation. SeO2 inhibited Staphylococcus epidermidis activity against  23  mm and staphylococcus aureus activity against  21  mm, as well as antifungal isolates  18  mm, which was more effective than bacterial Klebsiella Sp. and Escherichia coli.

References

Bibi I, Kamal S, Ahmed A, Iqbal M, Nouren S, Jilani K , et al .Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation. Int J Biol Macromole. 2017; 103: 783-790.https://doi.org/10.1016/j.ijbiomac.2017.05.023

Abed FG, Jubeir NJ, Al Ogaili HAT. Study Effect of the concentration of Iron on the Synthesized Zinc Oxide via the plant extract of beetroot. AIP Conf Proc. 2024; 2922(1): 040006 https://doi.org/10.1063/5.0183132

Alijani H Q, Pourseyedi S, Mahani M T, Khatami M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J Mol Struct. 2019; 1175: 214-218. https://doi.org/10.1016/j.molstruc.2018.07.103

Nava O J, Luque PA, Gómez-Gutiérrez C.M., Vilchis-Nestor A.R., Castro-Beltrán A., Mota-González M., et.al. Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis. J Mol Struct. 2017; 1134: 121-125. https://doi.org/10.1016/j.molstruc.2016.12.069

Reddy K.R., Green synthesis, morphological and optical studies of CuO nanoparticles. J Mol Struct. 2017; 1150: 553-557. https://doi.org/10.1016/j.molstruc.2017.09.005

Sabouri Z, Akbari A, Hosseini H A, Darroudi M. Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J Mol Struct. 2018; 1173: 931-936. https://doi.org/10.1016/j.molstruc.2018.07.063

Arshad M, Hussain T, Iqbal M, Abbas M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazil J Microbiol. 2017; 48. https://doi.org/10.1016/j.bjm.2017.02.003

Arshad M, Qayyum A A G, Haider R. Iqbal M, Nazir A. Influence of different solvents on portrayal and photocatalytic activity of tin-doped zinc oxide nanoparticles. J Mol Liq. 2018; 260:272-278. https://doi.org/10.1016/J.MOLLIQ.2018.03.074

Ashar A, Iqbal M, Bhatti IA, Ahmad MZ, Qureshi K, Nisar J, et al. Synthesis, 318 characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol 319 ethoxylate degradation under UV and solar irradiation. J Alloy Comp. 2016; 678: 126-136. http://dx.doi.org/10.1016%2Fj.jallcom.2016.03.251

Shahab-ud-Din, Ahmad MZ, Qureshi K, Bhatti IA, Zahid M, Nisar J ,etal . Hydrothermal synthesis of molybdenum trioxide, characterization and photocatalytic activity. Mater Res Bull. 2018; 100: 120-130. https://doi.org/10.1021/jp0684628.

Nazar N, Bibi I, Kamal S, Iqbal M, Nouren S, Jalani K, et al. Cu nanoparticles synthesis using a biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. Int J Biol Macromol. 2017; 106: 326. https://doi.org/10.1016/j.molliq.2018.02.034

Igwe OU, Nwamezie F. Green synthesis of iron nanoparticles using flower extract of Piliostigma thonningii and the antibacterial activity evaluation. Chem Int. 2018; 4: 60-66. http://www.bosaljournals/chemint/

Prabu H J, Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Modern Sci. 2015; 1: 237-246. https://doi.org/10.1016/j.kijoms.2015.12.003

Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE. Microwave assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain Chem Eng. 2013; 2: 367-376. https://doi.org/10.1021/sc4003664.

Aragão AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araújo MC, Santiago JD ,et al. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem. 2016 12(1): 4182-4188. http://dx.doi.org/10.1016/j.arabjc.2016.04.014

Ahmed S, Ahmad M, Swami B L, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016; 7: 17-28 https://doi.org/10.1016/j.jare.2015.02.007

Huh AJ, Kwon YJ. Nano antibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control. Release. 2011; 156: 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002

Li W, Dong K, Ren J, Qu X. A Lactamase-imprinted responsive hydrogel for the treatment of antibiotic-resistant bacteria. Angew Chem Int Ed Engl. 2016; 55 (28): 8049–8053. https://doi.org/10.1002/anie.201600205

Fan W, Tong Farn X, Yu B, Zhao Y. CO2-responsive polymer single-chain nanoparticles and self-assembly for gas-tunable nanoreactors. Chem Mater. 2017; 29: 5693–5701. https://doi.org/10.1021/acs.chemmater.7b01656

Wu Y, Song Z, Wang H, Han H., Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat Commun. 2019; 10: 1–10. https://doi.org/10.1038/s41467-019-12233-2

Ales Panácek, Milan K , Renata V, Robert P, Jana S, et al. Antifungal activity of silver nanoparticle against Candida spp. Biomaterials. 2009; 30: 6333–6340. https://doi.org/10.1016/j.biomaterials.2009.07.065

Monireh K, Alireza A, Hossein Z, Saman S, Zahra S. Mehrdad K, et al. Evaluation of Antifungal and Photocatalytic Activities of Gelatin‑Stabilized Selenium Oxide Nanoparticles. J Inorg Organomet Polym Mater. 2020; 30(38): 3036–3044. https://link.springer.com/article/10.1007/s10904-020-01462-4

Soumya M, Venkat K S. Cytotoxicity Analysis of Biosynthesized Selenium Nanoparticles Towards a Lung Cancer Cell Line. J Inorg Organomet Polym Mater. 2019; 30(4): 1852–1864. https://link.springer.com/article/10.1007/s10904-019-01409-4

Vetrivel C, Durairaj K, Kalaimurugan D, Viji M, Murugesh E, Wen C L, et al. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep. 2021; 11: 1032 https://doi.org/10.1038/s41598-020-80327-9

Rahi S K, Hassoni M H, Abd A N. Study effect of reinforcement and moisture on the impact strength of hybrid and single polymeric composites. J Eng applied Sci. 2018; 13(18): 7624–7629 http://dx.doi.org/10.36478/jeasci.2018.7624.7629

Hassanien R, Abed‐ Elmageed AA, Husein DZ. Eco-Friendly Approach to Synthesize Selenium Nanoparticles: Photocatalytic Degradation of Sunset Yellow Azo Dye and Anticancer Activity. Chem Sel. 2019; 4(31): 9018-9026. https://doi.org/10.1002/SLCT.201901267

Abbas SI, Thjeel Al Ogaili HAA. Nonlinear optical characteristics of chemical bath-deposited pure and Cu-doped SnO2 thin films: A comparative evaluation. Resu. Opt.. 2023; 13: 100529 https://doi.org/10.1016/j.rio.2023.100529

Maria S J, Joseph A N, Kesava P R, Alessio M, Gabriele G, Antonino Natalello, et al. Synthesis of Bioactive Silver Nanoparticles by a Pseudomonas Strain Associated with the Antarctic Psychrophilic Protozoon Euplotes focardii. Mar Drugs. 2020; 18(38): 1-13. http://dx.doi.org/10.3390/md18010038

Al- Ogaili HAT, Al-Wardy RA. Thermal analysis for stability the nanocrystals ZnSe(diamantane) J Phys: Conf Ser. 2020; 1591(1): 012008 https://doi.org/10.1088/1742-6596/1591/1/012008

Abd A N, Abdullah M T, Rahi S K, Habubi N F. CdO/FTO Schottky photodetector with enhanced spectral responsivity and Specific detectivity prepared by electrolysis method. J Phys: Conf Ser. 2020; 1660(1): 012047. https://doi.org/10.1088/1742-6596/1660/1/012047

Rahi S K, Hahamd W I, Thakir H N. Influence of the thermal annealing on properties of cadmium sulfide: Cupper 10%thin films and solar cell application. Mater Today Proc. 2021; 47: 6192-6196. https://doi.org/10.1016/j.matpr.2021.05.15

Zainab J S, Sabah M H, Sabeeha K S. Structural Analysis of Chemical and Green Synthesis of CuO Nanoparticles and their Effect on Biofilm. Baghdad Sci J. 2018; 15(2): 211. http://dx.doi.org/10.21123/bsj.2018.15.2.0211

Al Ogaili HAT, Abbas SI, Mohammed M A. Raman spectra and electronic features for nanotubes of znsse wurtziod: Ab-initio. Chalcogenide Lett. 2020; 17(5): 251–255. https://chalcogen.ro/251_OgailiHAT.pdf

Ahmed K H, Mohammed A A , Imad ML. A Green Synthesis of Iron/Copper Nanoparticles as a Catalytic of Fenton-like Reactions for Removal of Orange G Dye. Baghdad Sci J. 2022; 19(6): 6508. https://dx.doi.org/10.21123.

Downloads

Issue

Section

article

How to Cite

1.
The Fabrication of SeO2 Nanoparticles from Cinnamon extract: Optical properties and its application. Baghdad Sci.J [Internet]. [cited 2024 Nov. 7];22(5). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8208