الحل التقريبي لمعادلة نقل الحرارة الحيوية للانتشار الفرعي

محتوى المقالة الرئيسي

Jagdish Sonawane
https://orcid.org/0000-0001-9533-7906
Bahusaheb Sontakke
https://orcid.org/0000-0002-6071-0659
Kalyanrao Takale

الملخص

في هذه الورقة, ندرس نموذج نقل الحرارة الحيوية الفرعي ونطور مخطط فرق محدود صريح لمعادلة نقل الحرارة الحيوية للانتشار الجزئي الجزئي للوقت باستخدام مشتق كابوتو فابريزيو الكسري. ناقشنا الاستقرار المشروط والتقارب من مخطط المتقدمة. علاوة على ذلك ، يتم الحصول على حل رقمي لمعادلة نقل الحرارة الحيوية الجزئية الجزئية ويتم تمثيلها بيانيا بواسطة بايثون.

تفاصيل المقالة

كيفية الاقتباس
1.
الحل التقريبي لمعادلة نقل الحرارة الحيوية للانتشار الفرعي. Baghdad Sci.J [انترنت]. 4 مارس، 2023 [وثق 19 يناير، 2025];20(1(SI):0394. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8410
القسم
article

كيفية الاقتباس

1.
الحل التقريبي لمعادلة نقل الحرارة الحيوية للانتشار الفرعي. Baghdad Sci.J [انترنت]. 4 مارس، 2023 [وثق 19 يناير، 2025];20(1(SI):0394. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8410

المراجع

Harry H. Penne’s, Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948; 1: 93-122. https://doi.org/10.1152/jappl.1948.1.2.93

Kadhem HS, Hasan SQ. On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations. Baghdad Sci J. 2021 Sep. 1; 18(3): 0509. https://doi.org/10.21123/bsj.2021.18.3.0509

Damor RS, Kumar S, Shukla AK. Numerical solution of Fractional Bio heat Equation with Constant and Sinusoidal Heat Flux condition on skin tissue. J Math Anal. 2013; 1: 20-24. DOI: 10.12691/ajma-1-2-1.

Podlubny I. Fractional Differential equation. Math Sci Eng. 1999; 198: 1-79.

Hristov J. Bio-Heat Models Revisited: Concepts, Derivations, Nondimensalization and Fractionalization Approaches. Front Phys. 2019; 7: 189. https://doi.org/10.3389/fphy.2019.00189

Asjad MI. Fractional Mechanism with Power Law (Singular) and Exponential (Non-singular) Kernels and Its Applications in Bio Heat Transfer Model. Int J Heat Technol. 2019; 37: 846-852. https://doi.org/10.18280/ijht.370322

Ezzat MA, AlSowayan NS, Al-Muhiameed ZIA, Ezzat SM. Fractional modelling of Penne’s’ bio heat transfer equation. Heat Mass Transfer. 2014; 50; 907-914. https://doi.org/10.1007/s00231-014-1300-x.

Zhang Q, Sun Y, Yang J. Bio-heat transfer analysis based on fractional derivative and memory-dependent derivative heat conduction models. Case Stud. Therm Eng 2021; 27: 101-211. https://doi.org/10.1016/j.csite.2021.101211

Yépez-Martínez H, Gómez-Aguilar JF. A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM). J Comput Appl Math. 2019; 346: 247-260. https://doi.org/10.1016/j.cam.2018.07.023.

Mozafarifard M, Toghraie D. Time-fractional sub diffusion model for thin metal films under femtosecond laser pulses based on Caputo fractional derivative to examine anomalous diffusion process. Int J Heat Mass Transf. 2020; 153: 1-9. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119592

Ferras LL, Ford NJ, Morgado ML, Nobrega JM, Rebelo M. Fractional Penne’s Bio heat Equation: Theoretical and Numerical Studies. Frac Cal Appl Anal. 2015; 18: 1018-1106. DOI:10.1515/fca-2015-0062

Shih T-C, Yuan P, Lin W-L, Kou H-S. Analytical analysis of the Penne’s bio heat transfer equation with sinusoidal heat flux condition on skin surface. Med Eng Phys 2007; 29(9): 946-953. https://doi.org/10.1016/j.medengphy.2006.10.008.

Pandey HR, Gurung DB. Numerical solutions of one dimensional Bio heat transfer equation in cylindrical tissues. Int J Adv Eng Res Appl. 2018; 4(8): 194-201.

Patil HM, Maniyeri R. Finite difference method based analysis of bio-heat transfer in human breast cyst. Therm Sci. Eng Prog. 2019; 10: 42-47. https://doi.org/10.1016/j.tsep.2019.01.009

Takale KC. Numerical method for Time Fractional Bio heat Transfer Equation and Applications. Int J Res Anal Rev. 2019; 6: 1301-1307.

Jogdand SM, Datar MP, Takale KC. Explicite Finite Difference Scheme for Time Fractional Penne’s Bio heat Equation. Int J Res Anal Rev. 2019; 6: 984-987

Rasheed MA, Kadhim SN. Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank-Nicolson Method. Baghdad Sci J. 2022 Apr. 1; 19(2): 0321. https://doi.org/10.21123/bsj.2022.19.2.0321

Abdulhussein AM, Oda H. The Numerical Solution of Time -Space Fractional Bioheat Equation By Using Fractional Quadratic Spline Methods. AIP Conf Proc. 2020; 2235: 020013-1–020013-9. https://doi.org/10.1063/5.0007692

Qiao H, Liu Z, Cheng A. A Fast Compact Finite Difference Method for Fractional CattaneoEquation Based on Caputo–Fabirizio Derivative. Math Probl Eng. 2020; 2020: 1-17. https://doi.org/10.1155/2020/3842946

Kharde U, Takale K, Gaikwad S. Numerical Solution of Time Fractional Drug Concentration Equation in Central Nervous System. Int J Math Comput Sci. 2021; 11(6): 7317-7336. https://doi.org/10.28919/jmcs/6470