Approximate Solution of Sub diffusion Bio heat Transfer Equation
Main Article Content
Abstract
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
Received 20/1/2023
Revised 28/2/2023
Accepted 1/3/2023
Published 4/3/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Harry H. Penne’s, Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948; 1: 93-122. https://doi.org/10.1152/jappl.1948.1.2.93
Kadhem HS, Hasan SQ. On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations. Baghdad Sci J. 2021 Sep. 1; 18(3): 0509. https://doi.org/10.21123/bsj.2021.18.3.0509
Damor RS, Kumar S, Shukla AK. Numerical solution of Fractional Bio heat Equation with Constant and Sinusoidal Heat Flux condition on skin tissue. J Math Anal. 2013; 1: 20-24. DOI: 10.12691/ajma-1-2-1.
Podlubny I. Fractional Differential equation. Math Sci Eng. 1999; 198: 1-79.
Hristov J. Bio-Heat Models Revisited: Concepts, Derivations, Nondimensalization and Fractionalization Approaches. Front Phys. 2019; 7: 189. https://doi.org/10.3389/fphy.2019.00189
Asjad MI. Fractional Mechanism with Power Law (Singular) and Exponential (Non-singular) Kernels and Its Applications in Bio Heat Transfer Model. Int J Heat Technol. 2019; 37: 846-852. https://doi.org/10.18280/ijht.370322
Ezzat MA, AlSowayan NS, Al-Muhiameed ZIA, Ezzat SM. Fractional modelling of Penne’s’ bio heat transfer equation. Heat Mass Transfer. 2014; 50; 907-914. https://doi.org/10.1007/s00231-014-1300-x.
Zhang Q, Sun Y, Yang J. Bio-heat transfer analysis based on fractional derivative and memory-dependent derivative heat conduction models. Case Stud. Therm Eng 2021; 27: 101-211. https://doi.org/10.1016/j.csite.2021.101211
Yépez-Martínez H, Gómez-Aguilar JF. A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM). J Comput Appl Math. 2019; 346: 247-260. https://doi.org/10.1016/j.cam.2018.07.023.
Mozafarifard M, Toghraie D. Time-fractional sub diffusion model for thin metal films under femtosecond laser pulses based on Caputo fractional derivative to examine anomalous diffusion process. Int J Heat Mass Transf. 2020; 153: 1-9. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119592
Ferras LL, Ford NJ, Morgado ML, Nobrega JM, Rebelo M. Fractional Penne’s Bio heat Equation: Theoretical and Numerical Studies. Frac Cal Appl Anal. 2015; 18: 1018-1106. DOI:10.1515/fca-2015-0062
Shih T-C, Yuan P, Lin W-L, Kou H-S. Analytical analysis of the Penne’s bio heat transfer equation with sinusoidal heat flux condition on skin surface. Med Eng Phys 2007; 29(9): 946-953. https://doi.org/10.1016/j.medengphy.2006.10.008.
Pandey HR, Gurung DB. Numerical solutions of one dimensional Bio heat transfer equation in cylindrical tissues. Int J Adv Eng Res Appl. 2018; 4(8): 194-201.
Patil HM, Maniyeri R. Finite difference method based analysis of bio-heat transfer in human breast cyst. Therm Sci. Eng Prog. 2019; 10: 42-47. https://doi.org/10.1016/j.tsep.2019.01.009
Takale KC. Numerical method for Time Fractional Bio heat Transfer Equation and Applications. Int J Res Anal Rev. 2019; 6: 1301-1307.
Jogdand SM, Datar MP, Takale KC. Explicite Finite Difference Scheme for Time Fractional Penne’s Bio heat Equation. Int J Res Anal Rev. 2019; 6: 984-987
Rasheed MA, Kadhim SN. Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank-Nicolson Method. Baghdad Sci J. 2022 Apr. 1; 19(2): 0321. https://doi.org/10.21123/bsj.2022.19.2.0321
Abdulhussein AM, Oda H. The Numerical Solution of Time -Space Fractional Bioheat Equation By Using Fractional Quadratic Spline Methods. AIP Conf Proc. 2020; 2235: 020013-1–020013-9. https://doi.org/10.1063/5.0007692
Qiao H, Liu Z, Cheng A. A Fast Compact Finite Difference Method for Fractional CattaneoEquation Based on Caputo–Fabirizio Derivative. Math Probl Eng. 2020; 2020: 1-17. https://doi.org/10.1155/2020/3842946
Kharde U, Takale K, Gaikwad S. Numerical Solution of Time Fractional Drug Concentration Equation in Central Nervous System. Int J Math Comput Sci. 2021; 11(6): 7317-7336. https://doi.org/10.28919/jmcs/6470