التصنيع الامن وتوصيف وتقييم التأثيرات السامة لـ ZnO NPs على نحل العسل Apis mellifera))

المؤلفون

  • Ayoub Sabir Karim قسم الفيزياء، كلية التربية، جامعة صلاح الدين،أربيل ،أربيل، العراق. https://orcid.org/0000-0002-5526-6514
  • Fuad Othman Abdullah قسم الكيمياء، كلية العلوم، جامعة صلاح الدين، أربيل ، أربيل، العراق. & قسم العقاقير، كلية الصيدلة، جامعة تيشك الدولية، أربيل، العراق
  • Najat Zaid Mohammad Mohammad قسم الكيمياء، كلية العلوم، جامعة صلاح الدين، أربيل ، أربيل، العراق https://orcid.org/0000-0002-6015-2327

DOI:

https://doi.org/10.21123/bsj.2023.8664

الكلمات المفتاحية:

Apis mellifera ، التصنيع الامن، مستخلص نباتي، تأثير سام، جسيمات اوكسيد الزنك النانوية .

الملخص

الخلاصة:

         إن الاهتمام البحثي لتحضير المواد النانوية من المنتجات الطبيعية كطريقة التصنيع الخضراء واستخدمها  في مختلف التطبيقات الميدانية ، نال  اهتمام كبير من خلال التركيب الأخضر للجسيمات النانوية. يمكن اعتبار جسيمات ZnO أكسيد الزينك أحد أكاسيد المعادن الأكثر استخدامًا لمعظم متطلبات المنتجات المستخدمة يوميًا. في هذا البحث تم تحضير جزيئات اكسيد الزينك النانويه باستخدام مستخلص البقدونس Petroselinum crispum)  ) ولإجراء الدراسة الأولى للتقييم السام لمركب جزيئات اكسيد الزينك النانويه وجوانب تأثيرها على نحل العسل Apis mellifera)  ) . تم تشخيص جزيئات اكسيد الزنك النانويه باستخدام SEM و EDX و XRD و UV-Vis و FTIR الطيفي. تم تطبيق التقييم السمي لـجزيئات اكسيد الزينك النانويه في نحل العسل. تم الحصول على تركيز اكسيد الزنك القاتلة ، وتم تغيير قيم حساب نطاق LC50 خلال 288 ساعة من التغذية لجسيمات اكسيد الزنك النانوية بتركيزات مختلفة (25 ، 50 ، 250 ، 500 مجم لكل 100 مل) وتغيرت قيم التركيز المميت النصفي التي تم الحصول عليها من 275 ، تتناقص إلى 162.55 لمدى البحث بعد كل 24 ساعة من اجراء حسابات التغذية التعرضية . بالإضافة إلى ذلك ، بالنسبة للمجموعة التي عولجت بـ 500 مجم من اكسيد الزنك لكل 100 مل ، لوحظ معدل وفيات أكبر  بلمقارنة مع التركيزات الأخرى حيث زادت أكثر من جميع العناصر الأخرى التي تشير إلى التركيزات المذكورة أعلاه ولكن ليس مع المجموعة الضابطة. تم تقديم التصميم الاساس  لإنشاء خلية  النحل العسل لأول مرة ولم يتم العثور على دراسات سابقة  مماثلة في الأدبيات.

المراجع

Kalpana V N , Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem. 2018; 2018: 1-12. https://doi.org/10.1155/2018/3569758

Dash D K, Panik R K, Sahu A K, Tripathi V. Role of nanobiotechnology in drug discovery, development and molecular diagnostic. Appl Nanobiotechnology: Intech Open; 2020. https://doi.org/10.5772/intechopen.92796

Phull A-R, Abbas Q, Ali A, Raza H, Zia M, Haq I-u. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J Pharm Sci. 2016; 2(1): 31-6. https://doi.org/10.1016/j.fjps.2016.03.001

Ahmed K H, Mohammed A A, Imad M Luaibi. A green synthesis of Iron/Copper nanoparticles as a catalytic of fenton-like reactions for removal of orange G Dye. Baghdad Sci J. 2022; 19(6): 1249-1264 https://dx.doi.org/10.21123/bsj.2022.6508

Alwash A. The green synthesize of zinc oxide catalyst using pomegranate peels extract for the photocatalytic degradation of methylene blue dye. Baghdad Sci J. 2020; 17(3): 787–794. https://doi.org/10.21123/bsj.2020.17.3.0787

Mahshid M, Shahram S, Fuad O A. Application of magnetic nanomaterials in magnetic-chromatography: A review. Talanta. 2021; 229: 122273. https://doi.org/10.1016/j.talanta.2021.122273

Masciangioli T, Zhang W. Environmental technologies at the nanoscal., Environ Sci Technol. 2003; 37(5): 102A-108A

Günter O, Eva O and Jan O. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005; 113(7): 823-839. https://doi.org/10.1289/ehp.7339

Ajey S, Singh N B, Imtiyaz H, Himani S , Singh S C. Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent. 2015; 4(8): 25-40. www.ijpsi.org

David M C, Ebrahim M, Ada V, Hamed B, Veer S, Jorge L C, et al. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. J Phys Materials. 2020; 3(3): 034005. https://doi.org/10.1155/2022/3077747

Bilal H A, Muzamil S, Syed S H, Munazza N, Sania N, Waqar A. Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum). J Nanomater. 2019; 9(8): 1171. https://doi.org/10.3390/nano9081171

Yanli G, Dan X, Dan R, Xiyu K, Zeng W. Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study Food. Sci Technol. 2020; 126: 109297. https://doi.org/10.1016/j.lwt.2020.109297

Ya-Nan C, Mingyi Z, Lin X, Jun Z, Gengmei X. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. 2012; 5(12): 2850-2871. https://doi.org/10.3390/ma5122850

Tamara M, Gordana G, Janko B, Kristina S, Tina M , Damjana D. Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere. 2015; 120: 547-554. https://doi.org/10.1016/j.chemosphere.2014.07.054

Agyare C, Appiah T, Boakye Y D , Apenteng J. Chapter 25 Petroselinum crispum: a review. Medicinal spices and vegetables from Africa.2017; 527-547. https://doi.org/10.1016/b978-0-12-809286-6.00025-x

Devendra K G, Ayush K, Gopal K B, Vikas Kr J , Jagannadha R M. Microbes induced biofabrication of nanoparticles: a review. Inorg Nano-Met Chem. 2020; 50(10): 983-999. https://doi.org/10.1080/24701556.2020.1731539

Muhammad W U, Zhijun S, Xudian S, Di Z, Sixiang L, Guang Y. Microbes as structural templates in biofabrication: study of surface chemistry and applications. ACS Sustainable Chem Eng. 2017; 5(12): 11163-11175. https://doi.org/10.1021/cm702152a

Sathishkumar M, Sneha K, In S K, Juan M, Tripathy S J , Yun Y-S. Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater. 2009; 171(1-3): 400-404. https://doi.org/10.1016/j.jhazmat.2009.06.014

Selvaraj M R, Annadurai B, Rajendran K, Venkatesh G K , Arunachalam P. Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf B . 2012; 92: 209-212. https://doi.org/10.1016/j.colsurfb.2011.11.044

Dennis V, Jay D E, Claude S, Chris M, Eric H, Bach K N et al.Colony collapse disorder: a descriptive study. PloS one 2009; 4(8): e6481. https://doi.org/10.1371/journal.pone.0006481

Nicole C M, Bernd N. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. 2008; 42(12): 4447-4453. https://doi.org/10.1021/es7029637

Nowack B, Ranville J F, Diamond S, Gallego-Urrea J A, Metcalfe C, Rose J, et al. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem. 2012; 31(1): 50-59. https://doi.org/10.1002/etc.726

Hongbo M, Phillip L, Stephen A D. Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ. Pollut. 2013; 172: 76-85. https://doi.org/10.1016/j.envpol.2012.08.011

Santhoshkumar J, Kumar S V , Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Res Efficient Tech. 2017; 3(4): 459-465.https://doi.org/10.1016/j.reffit.2017.05.001

Zohra N. K, Farhat S , Iffat B K. Synthesis and characterization of ZnO nanoparticles. Mater Today: Proc. 2015; 2(10): 5619-5621. https://doi.org/10.1016/j.matpr.2015.11.100

Meron G D, Fedlu K S, Gemechu D E, Bedasa A G. Synthesis of zinc oxide nanoparticles using leaf extract of lippia adoensis (koseret) and evaluation of its antibacterial activity. J Chem. 2020; 2020: 1. http://dx.doi.org/10.1155/2020/7459042

Ali A , Seham A, Ruba A A A, Manal A A , Noura S A, Shouq F A et al. Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules. 2020; 25(18): 4198. https://doi.org/10.3390/molecules25184198

Thokozani X , Patli P M, and Mahadi L. Decomposition of bis (N-benzyl-salicydenaminato) zinc (II) complex for the synthesis of ZnO nanoparticles to fabricate ZnO-chitosan nanocomposite for the removal of iron (II) ions from wastewater. J Chem. 2019; 20: 19. https://doi.org/10.1155/2019/1907083

Sorna P R , Kandasamy S. Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J Nanotechnol. 2017; 2017: 1-7. https://doi.org/10.1155/2017/8348507

Vaezi M and Sadrnezhaad S. Nanopowder synthesis of zinc oxide via solochemical processing. Mater Des. 2007; 28(2): 515-519. https://doi.org/10.1016/j.matdes.2005.08.016

Khoshhesab Z M, Sarfaraz M , Asadabad M A. Preparation of ZnO nanostructures by chemical precipitation method. Inorg Nano-Met Chem. 2011; 41(7): 814-819. https://doi.org/10.1080/15533174.2011.591308

Sowa H, Ahsbahs H. High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape. J Appl Crystallogr. 2006; 39(2): 169-175. https://doi.org/10.1107/S0021889805042457/ko5022zno87sup6.hkl

Dobrucka R, Długaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci. 2016; 23(4): 517-523. https://doi.org/10.1016/j.sjbs.2015.05.016

Satyanarayana T, Srinivasa R K , Nagarjuna G. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int Sch Res Notices, 2012; 2012: 1. https://doi.org/10.5402/2012/372505

Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S. RETRACTED: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 143: 158–164. https://doi.org/10.1016/j.saa.2015.02.011

Yared W, Tesfalem A, Solomon A. Evaluation of antibacterial activity and phytochemical constituents of leaf extract of Lippia adoensis. Asia Pacific J Energy Environ. 2014; 1(1): 45-53. https://doi.org/10.18034/apjee.v1i1.209

Ajey S, Singh N B, Imtiyaz H, Himani S, Vijaya Y, Singh S C, Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol. 2016;. 233: 84-94. https://doi.org/10.1016/j.jbiotec.2016.07.010

Shirin H , Negar M. Green synthesis of zinc oxide nanoparticles using parsley extract. J Nanomed. Res. 2018; 3(1): 44-50. https://doi.org/10.22034/nmrj.2018.01.007

Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol. 2015; 26(5): 1294-1299. https://doi.org/10.1016/j.apt.2015.07.001

Bhatt I , Tripathi B N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere. 2011; 82(3): 308-317. https://doi.org/10.1016/j.chemosphere.2010.10.011

Stephen J K, Pedro J J A, Graeme E B, Teresa F F, Richard D H , Delina Y L, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol. 2008; 27(9): 1825-1851. https://doi.org/10.1897/08-090.1

Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect. 2004; 112(10): 1058-1062. https://doi.org/10.1289/ehp.7021

Smith C J, Shaw B J, Handy R D. Toxicity of single walled carbon nanotubes to rainbow trout,(Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol. 2007; 82(2): 94-109. https://doi.org/10.1016/j.aquatox.2007.02.003

Buffet P E, Tankoua F, Pan J F, Berhanu D, Herrenknecht C, Poirier L et al. Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere. 2011; 84(1): 166-174. https://doi.org/10.1016/j.chemosphere.2011.02.003

Margit H, Angela I, Irina B, Henri-C D, Anne K. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri, crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008; 71(7): 1308-1316. https://doi.org/10.1016/j.chemosphere.2007.11.047

Amy H R, Melissa M C, Tonya C B and David L C. The effects of silver nanoparticleson oyster embryos. Mar Environ Res. 2010; 69: S49-S51. https://doi.org/10.1016/j.marenvres.2009.10.011

Masala O, and Seshadri R. Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res. 2004; 34: 41-81. https://doi.org/10.1146/annurev.matsci.34.052803.090949

Benay S T. Toxicity of nanoparticles on insects: A review. Environ Sci Pollut Res. 2018; 1(2): 49-61. https://www.researchgate.net/publication/347839379

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silvernanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014; 98(5): 1951-1961. https://doi.org/10.1007/s00253-013-5473-x

Xiumei J, Teodora M, Liming W, Rasmus F, Duncan S S, Herman Autrup, et al. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology, 2015; 9(2): 181-189. https://doi.org/10.3109/17435390.2014.907457

Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 2016; 115(1): 23-34 https://doi.org/10.1007/s00436-015-4800-9

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
التصنيع الامن وتوصيف وتقييم التأثيرات السامة لـ ZnO NPs على نحل العسل Apis mellifera)). Baghdad Sci.J [انترنت]. [وثق 17 مايو، 2024];21(6). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8664