Green Synthesis and Evaluation of ZnO NPs and study the effect of Their toxic on Honey Bee (Apis mellifera)

Main Article Content

Ayoub Sabir Karim
https://orcid.org/0000-0002-5526-6514
Fuad Othman Abdullah
Najat Zaid Mohammad Mohammad
https://orcid.org/0000-0002-6015-2327

Abstract

The research interest in nanomaterials preparation from natural products as a green method and their application in various fields applications, tremendous attention has been taken to the green composition of nanoparticles. ZnO can be considered one of the most widely used metal oxides for most requirements of daily used products. In this research ZnO NPs prepared by using Petroselinum crispum (parsley) extract and to make the first study of toxicological evaluation of ZnO NPs their effect aspects on Honey bees (Apis mellifera). ZnO NPs have been charactarized by using SEM, EDX, XRD, UV-Vis and FTIR Spectroscopy. The toxicological evaluation of ZnO NPs has been applied to a honey bee. The lethal ZnO concentration was obtained, and the LC50 range calculation values ​​were changed during 288 hours of feeding to ZnO nanoparticles at different concentrations (25, 50, 250, 500 mg per 100 ml) and the obtained LC50 values changed from 275, decreasing to 162.55 for the research range times after every 24 hours of exposure feeding calculations. In addition, for the group treated with 500 mg of ZnO per 100 ml, higher mortality was observed compared to other concentrations as it increased more than all other items indicating the above concentrations but not with the control group. The ergonomic design for creating a honey bee shelter was first introduced and no similar investigations were found in the literature.

Article Details

How to Cite
1.
Green Synthesis and Evaluation of ZnO NPs and study the effect of Their toxic on Honey Bee (Apis mellifera). Baghdad Sci.J [Internet]. 2024 Jun. 1 [cited 2025 Jan. 22];21(6):2124. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8664
Section
article

How to Cite

1.
Green Synthesis and Evaluation of ZnO NPs and study the effect of Their toxic on Honey Bee (Apis mellifera). Baghdad Sci.J [Internet]. 2024 Jun. 1 [cited 2025 Jan. 22];21(6):2124. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8664

References

Kalpana V N , Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem. 2018; 2018: 1-12. https://doi.org/10.1155/2018/3569758

Dash D K, Panik R K, Sahu A K, Tripathi V. Role of nanobiotechnology in drug discovery, development and molecular diagnostic. Appl Nanobiotechnology: Intech Open; 2020. https://doi.org/10.5772/intechopen.92796

Phull A-R, Abbas Q, Ali A, Raza H, Zia M, Haq I-u. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J Pharm Sci. 2016; 2(1): 31-6. https://doi.org/10.1016/j.fjps.2016.03.001

Ahmed K H, Mohammed A A, Imad M Luaibi. A green synthesis of Iron/Copper nanoparticles as a catalytic of fenton-like reactions for removal of orange G Dye. Baghdad Sci J. 2022; 19(6): 1249-1264 https://dx.doi.org/10.21123/bsj.2022.6508

Alwash A. The green synthesize of zinc oxide catalyst using pomegranate peels extract for the photocatalytic degradation of methylene blue dye. Baghdad Sci J. 2020; 17(3): 787–794. https://doi.org/10.21123/bsj.2020.17.3.0787

Mahshid M, Shahram S, Fuad O A. Application of magnetic nanomaterials in magnetic-chromatography: A review. Talanta. 2021; 229: 122273. https://doi.org/10.1016/j.talanta.2021.122273

Masciangioli T, Zhang W. Environmental technologies at the nanoscal., Environ Sci Technol. 2003; 37(5): 102A-108A

Günter O, Eva O and Jan O. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005; 113(7): 823-839. https://doi.org/10.1289/ehp.7339

Ajey S, Singh N B, Imtiyaz H, Himani S , Singh S C. Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent. 2015; 4(8): 25-40. www.ijpsi.org

David M C, Ebrahim M, Ada V, Hamed B, Veer S, Jorge L C, et al. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. J Phys Materials. 2020; 3(3): 034005. https://doi.org/10.1155/2022/3077747

Bilal H A, Muzamil S, Syed S H, Munazza N, Sania N, Waqar A. Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum). J Nanomater. 2019; 9(8): 1171. https://doi.org/10.3390/nano9081171

Yanli G, Dan X, Dan R, Xiyu K, Zeng W. Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study Food. Sci Technol. 2020; 126: 109297. https://doi.org/10.1016/j.lwt.2020.109297

Ya-Nan C, Mingyi Z, Lin X, Jun Z, Gengmei X. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. 2012; 5(12): 2850-2871. https://doi.org/10.3390/ma5122850

Tamara M, Gordana G, Janko B, Kristina S, Tina M , Damjana D. Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere. 2015; 120: 547-554. https://doi.org/10.1016/j.chemosphere.2014.07.054

Agyare C, Appiah T, Boakye Y D , Apenteng J. Chapter 25 Petroselinum crispum: a review. Medicinal spices and vegetables from Africa.2017; 527-547. https://doi.org/10.1016/b978-0-12-809286-6.00025-x

Devendra K G, Ayush K, Gopal K B, Vikas Kr J , Jagannadha R M. Microbes induced biofabrication of nanoparticles: a review. Inorg Nano-Met Chem. 2020; 50(10): 983-999. https://doi.org/10.1080/24701556.2020.1731539

Muhammad W U, Zhijun S, Xudian S, Di Z, Sixiang L, Guang Y. Microbes as structural templates in biofabrication: study of surface chemistry and applications. ACS Sustainable Chem Eng. 2017; 5(12): 11163-11175. https://doi.org/10.1021/cm702152a

Sathishkumar M, Sneha K, In S K, Juan M, Tripathy S J , Yun Y-S. Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater. 2009; 171(1-3): 400-404. https://doi.org/10.1016/j.jhazmat.2009.06.014

Selvaraj M R, Annadurai B, Rajendran K, Venkatesh G K , Arunachalam P. Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf B . 2012; 92: 209-212. https://doi.org/10.1016/j.colsurfb.2011.11.044

Dennis V, Jay D E, Claude S, Chris M, Eric H, Bach K N et al.Colony collapse disorder: a descriptive study. PloS one 2009; 4(8): e6481. https://doi.org/10.1371/journal.pone.0006481

Nicole C M, Bernd N. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. 2008; 42(12): 4447-4453. https://doi.org/10.1021/es7029637

Nowack B, Ranville J F, Diamond S, Gallego-Urrea J A, Metcalfe C, Rose J, et al. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem. 2012; 31(1): 50-59. https://doi.org/10.1002/etc.726

Hongbo M, Phillip L, Stephen A D. Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ. Pollut. 2013; 172: 76-85. https://doi.org/10.1016/j.envpol.2012.08.011

Santhoshkumar J, Kumar S V , Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Res Efficient Tech. 2017; 3(4): 459-465.https://doi.org/10.1016/j.reffit.2017.05.001

Zohra N. K, Farhat S , Iffat B K. Synthesis and characterization of ZnO nanoparticles. Mater Today: Proc. 2015; 2(10): 5619-5621. https://doi.org/10.1016/j.matpr.2015.11.100

Meron G D, Fedlu K S, Gemechu D E, Bedasa A G. Synthesis of zinc oxide nanoparticles using leaf extract of lippia adoensis (koseret) and evaluation of its antibacterial activity. J Chem. 2020; 2020: 1. http://dx.doi.org/10.1155/2020/7459042

Ali A , Seham A, Ruba A A A, Manal A A , Noura S A, Shouq F A et al. Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules. 2020; 25(18): 4198. https://doi.org/10.3390/molecules25184198

Thokozani X , Patli P M, and Mahadi L. Decomposition of bis (N-benzyl-salicydenaminato) zinc (II) complex for the synthesis of ZnO nanoparticles to fabricate ZnO-chitosan nanocomposite for the removal of iron (II) ions from wastewater. J Chem. 2019; 20: 19. https://doi.org/10.1155/2019/1907083

Sorna P R , Kandasamy S. Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J Nanotechnol. 2017; 2017: 1-7. https://doi.org/10.1155/2017/8348507

Vaezi M and Sadrnezhaad S. Nanopowder synthesis of zinc oxide via solochemical processing. Mater Des. 2007; 28(2): 515-519. https://doi.org/10.1016/j.matdes.2005.08.016

Khoshhesab Z M, Sarfaraz M , Asadabad M A. Preparation of ZnO nanostructures by chemical precipitation method. Inorg Nano-Met Chem. 2011; 41(7): 814-819. https://doi.org/10.1080/15533174.2011.591308

Sowa H, Ahsbahs H. High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape. J Appl Crystallogr. 2006; 39(2): 169-175. https://doi.org/10.1107/S0021889805042457/ko5022zno87sup6.hkl

Dobrucka R, Długaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci. 2016; 23(4): 517-523. https://doi.org/10.1016/j.sjbs.2015.05.016

Satyanarayana T, Srinivasa R K , Nagarjuna G. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int Sch Res Notices, 2012; 2012: 1. https://doi.org/10.5402/2012/372505

Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S. RETRACTED: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 143: 158–164. https://doi.org/10.1016/j.saa.2015.02.011

Yared W, Tesfalem A, Solomon A. Evaluation of antibacterial activity and phytochemical constituents of leaf extract of Lippia adoensis. Asia Pacific J Energy Environ. 2014; 1(1): 45-53. https://doi.org/10.18034/apjee.v1i1.209

Ajey S, Singh N B, Imtiyaz H, Himani S, Vijaya Y, Singh S C, Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol. 2016;. 233: 84-94. https://doi.org/10.1016/j.jbiotec.2016.07.010

Shirin H , Negar M. Green synthesis of zinc oxide nanoparticles using parsley extract. J Nanomed. Res. 2018; 3(1): 44-50. https://doi.org/10.22034/nmrj.2018.01.007

Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol. 2015; 26(5): 1294-1299. https://doi.org/10.1016/j.apt.2015.07.001

Bhatt I , Tripathi B N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere. 2011; 82(3): 308-317. https://doi.org/10.1016/j.chemosphere.2010.10.011

Stephen J K, Pedro J J A, Graeme E B, Teresa F F, Richard D H , Delina Y L, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol. 2008; 27(9): 1825-1851. https://doi.org/10.1897/08-090.1

Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect. 2004; 112(10): 1058-1062. https://doi.org/10.1289/ehp.7021

Smith C J, Shaw B J, Handy R D. Toxicity of single walled carbon nanotubes to rainbow trout,(Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol. 2007; 82(2): 94-109. https://doi.org/10.1016/j.aquatox.2007.02.003

Buffet P E, Tankoua F, Pan J F, Berhanu D, Herrenknecht C, Poirier L et al. Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere. 2011; 84(1): 166-174. https://doi.org/10.1016/j.chemosphere.2011.02.003

Margit H, Angela I, Irina B, Henri-C D, Anne K. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri, crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008; 71(7): 1308-1316. https://doi.org/10.1016/j.chemosphere.2007.11.047

Amy H R, Melissa M C, Tonya C B and David L C. The effects of silver nanoparticleson oyster embryos. Mar Environ Res. 2010; 69: S49-S51. https://doi.org/10.1016/j.marenvres.2009.10.011

Masala O, and Seshadri R. Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res. 2004; 34: 41-81. https://doi.org/10.1146/annurev.matsci.34.052803.090949

Benay S T. Toxicity of nanoparticles on insects: A review. Environ Sci Pollut Res. 2018; 1(2): 49-61. https://www.researchgate.net/publication/347839379

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silvernanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014; 98(5): 1951-1961. https://doi.org/10.1007/s00253-013-5473-x

Xiumei J, Teodora M, Liming W, Rasmus F, Duncan S S, Herman Autrup, et al. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology, 2015; 9(2): 181-189. https://doi.org/10.3109/17435390.2014.907457

Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 2016; 115(1): 23-34 https://doi.org/10.1007/s00436-015-4800-9