كشف تشوهات القدم المختلفة باستخدام حساسات الضغط الأومية وتصنيفها سكونيا من خلال الشبكات العصبونية
محتوى المقالة الرئيسي
الملخص
تُعَدُّ أنظمة النعال الحسّاسة للحركة تقنية واعدة للعديد من التطبيقات في الرعاية الصحية والرياضة. حيث يمكن أن توفّر هذه الأنظمة معلومات قيّمة حول توزيع الضغط على القدم وأنماط المشي لأفراد مختلفين. ومع ذلك، فإن تصميم وتنفيذ مثل هذه الأنظمة يواجه العديد من التحديات، مثل اختيار الحسّاسات والمعايرة ومعالجة البيانات والتفسير. في هذه الدراسة، نقترح نظام نعل حساس باستخدام مقاومات استشعار القوى لقياس الضغط المطبّق من القدم على مناطق مختلفة من النعل. يقوم هذا النظام بتصنيف أربعة أنواع من تشوهات القدم: طبيعي، مسطح، انحراف القدم إلى الداخل، وزيادة انحراف القدم إلى الخارج. تستخدم مرحلة التصنيف قيم الضغط الفرقية على نقاط الضغط كمدخلات لنموذج التغذية الأمامية للشبكات العصبية. تم جمع البيانات من 60 فرداً تم تشخيصهم بالحالات المدروسة. حقق تنفيذ التغذية الأمامية للشبكات العصبية دقة بنسبة 96.6٪ باستخدام 50٪ من المجموعة البيانية كبيانات تدريبية و 92.8٪ باستخدام 30٪ من البيانات التدريبية فقط. ويوضح المقارنة مع الأعمال ذات الصلة الأثر الإيجابي لاستخدام القيم الفرق لنقاط الضغط كمدخلات للشبكات العصبية مقارنة بالبيانات الأولية.
Received 19/04/2023
Revised 26/08/2026
Accepted 28/08/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
De Groote F, Falisse A. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait. Proc Biol Sci. 2021; 288(1946): 20202432. https://doi.org/10.1098/rspb.2020.2432
Sethi D, Bharti S, Prakash C. A comprehensive survey on gait analysis: History, parameters, approaches, pose estimation, and future work. Artif Intell Med. 2022; 129(2022): 102314. https://doi.org/10.1016/j.artmed.2022.102314
Osoba MY, Rao AK, Agrawal SK, Lalwani AK. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig Otolaryngol. 2019; 4(1): 143-53. https://doi.org/10.1002/lio2.252
Neves MP, da Conceição CS, Lucareli PR, da Silva Barbosa RS, Vieira JP, de Lima Brasileiro AJ, et al. Effects of Foot Orthoses on Pain and the Prevention of Lower Limb Injuries in Runners: Systematic Review and Meta-Analysis. J Sport Rehabil. 2022; 31(8): 1067-74. https://doi.org/10.1123/jsr.2021-0302
McClure PK, Herzenberg JE. The natural history of lower extremity malalignment. J Pediatr Orthop. 2019 J; 39(6): S14-9. https://doi.org/10.1097/BPO.0000000000001361
Douglas C, Wright J, Jacobs B. Variations in gait development: what is normal and when should I be concerned?. Paediatr Child Health. 2022; 32(2): 71-6. https://doi.org/10.1016/j.paed.2021.11.005
Collins C. Getting Ready for Foot Care Certification: Foot Care Basics: Foot Care Basics. J Wound Ostomy Continence Nurs. 2019; 46(3): 248–50. https://doi.org/10.1097/WON.0000000000000531.
Jiang H, Mei Q, Wang Y, He J, Shao E, Fernandez J, Gu Y. Understanding foot conditions, morphologies and functions in children: a current review. Front Bioeng Biotechnol. 2023; 11(2023): 1192524. https://doi.org/10.3389/fbioe.2023.1192524
Arachchige SN, Chander H, Knight A. Flatfeet: Biomechanical implications, assessment and management. Foot. 2019; 38(2019): 81-5. https://doi.org/10.1016/j.foot.2019.02.004
Hadj-Moussa F, Ngan CC, Andrysek J. Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review. Gait Posture. 2022; 92: 83-95. https://doi.org/10.1016/j.gaitpost.2021.10.044
Zhang B, Lu Q. A current review of foot disorder and plantar pressure alternation in the elderly. Phys Act Health. 2020; 4(1): 95. https://doi.org/10.5334/paah.57
Osher L, Shook JE. Imaging of the Pes cavus deformity. Clin Podiatr Med Surg. 2021; 38: 303–21. https://doi.org/10.1016/j.cpm.2021.03.004
Ortolani M, Leardini A, Pavani C, Scicolone S, Girolami M, Bevoni R, et al. Angular and linear measurements of adult flexible flatfoot via weight-bearing CT scans and 3D bone reconstruction tools. Sci Rep. 2021; 11(1): 16139. https://doi.org/10.1038/s41598-021-95708-x
Ahmad AA, Ghanem AF, Hamaida JM, Maree MS, Aker LJ, Kamesh MI, et al. Magnetic resonance imaging of severe idiopathic club foot treated with one-week accelerated Ponseti (OWAP) technique. Foot Ankle Surg. 2022; 28(3): 338–46. https://doi.org/10.1016/j.fas.2021.04.012
Alsabek MB, Abdul Aziz AR. Diabetic foot ulcer, the effect of resource-poor environments on healing time and direct cost: A cohort study during Syrian crisis. Int Wound J. 2022; 19(3): 531–7. https://doi.org/10.1111/iwj.13651
Tan AM, Fuss FK, Weizman Y, Woudstra Y, Troynikov O. Design of low cost smart insole for real time measurement of plantar pressure. Procedia Technol. 2015; 20(2015): 117–22. https://doi.org/ 10.1016/j.protcy.2015.07.020
Ren B, Liu J. Design of a Plantar Pressure Insole Measuring System Based on Modular Photoelectric Pressure Sensor Unit. Sensors. 2021;21(11):3780. https://doi.org/10.3390/s21113780
Zhang Q, Wang YL, Xia Y, Wu X, Kirk TV, et al. A low-cost and highly integrated sensing insole for plantar pressure measurement. Sens BioSensing Res. 2019; 26(2019): 100298. https://doi.org/10.1016/j.sbsr.2019.100298
Fazio R, Perrone E, Velázquez R, De Vittorio M, Visconti P. Development of a self-powered piezo-resistive smart insole equipped with low-power BLE connectivity for remote gait monitoring. Sensors. 2021; 21(13): 4539. https://doi.org/10.3390/s21134539
Wang W, Cao J, Yu J, Liu R, Bowen CR, et al. Self-powered smart insole for monitoring human gait signals. Sensors. 2019 ;19(24): 5336. https://doi.org/10.3390/s19245336
Park J, Kim M, Hong I, Kim T, Lee E, Kim E-A, et al. Foot plantar pressure measurement system using highly sensitive crack-based sensor. Sensors. 2019; 19(24). https://doi.org/10.3390/s19245504
Suprapto SS, Setiawan AW, Zakaria H, Adiprawita W, Supartono B. Low-cost pressure sensor matrix using velostat. 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), IEEE; 2017. https://doi.org/10.1109/ICICI-BME.2017.8537720
López DL, González LC, Iglesias ME, Canosa JL, Sanz DR, Lobo CC, et al. Quality of Life Impact Related to Foot Health in a Sample of Older People with Hallux Valgus. Aging Dis. 2016;7 (1):45–52. https://doi.org/ 10.14336/AD.2015.0914
Subramaniam S, Majumder S, Faisal AI, Deen MJ. Insole-based systems for health monitoring: Current solutions and research challenges. Sensors. 2022; 22(1): 438. https://doi.org/10.3390/s22020438
Wang M, Wang X, Fan Z, Chen F, Zhang S, Peng C. Research on feature extraction algorithm for plantar pressure image and gait analysis in stroke patients. J Vis Commun Image Represent. 2019; 58(2019): 525–31. https://doi.org/10.1016/j.jvcir.2018.12.017
Chae J, Kang Y-J, Noh Y. A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data. Sensors. 2020; 20(16):4481. https://doi.org/10.3390/s20164481
Rosero-Montalvo PD, Fuentes-Hernández EA, Morocho-Cayamcela ME, Sierra-Martínez LM, Peluffo-Ordóñez DH. Addressing the data acquisition paradigm in the early detection of pediatric foot deformities. Sensors. 2021; 21(13):4422. https://doi.org/10.3390/s21134422
Mun F, Choi A. Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system. J Neuroeng Rehabil. 2022; 19(1): 4. https://doi.org/10.1186/s12984-022-00987-8
Mei Z, Ivanov K, Zhao G, Wu Y, Liu M, Wang L. Foot type classification using sensor-enabled footwear and 1D-CNN. Measurement. 2020; 165(2020): 108184. https://doi.org/10.1016/j.measurement.2020.108184
Balbin JR, De Guzman JPB, Trinidad JGN, Yaya FDS. Foot deformity determination and health risk prediction through foot plantar analysis using pressure sensor matrix. 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS), IEEE; 2021. https://doi.org/10.1109/I2CACIS52118.2021.9495907
D’Angelantonio E, Lucangeli L, Camomilla V, Mari F, Mascia G, Pallotti A. Classification-Based Screening of Phlebopathic Patients Using Smart Socks. Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE; n.d. https://doi.org/10.1109/MetroInd4.0IoT54413.2022.9831481
Chen M, Huang B, Xu Y. Postural kyphosis detection using intelligent shoes. 2008 IEEE International Conference on Robotics and Automation, IEEE; 2008. https://doi.org/10.1109/ROBOT.2008.4543658
Ghani APDRF, Hassan HS. Human Computer Interface for Wheelchair Movement. Baghdad Sci J. 2017; 14(2): 0437. https://doi.org/10.21123/bsj.2017.14.2.0437
Florez JA, Velasquez A. Calibration of force sensing resistors (fsr) for static and dynamic applications. 2010 IEEE ANDESCON, IEEE; 2010. https://doi.org/10.1109/ANDESCON.2010.5633120
Queen RM, Mall NA, Hardaker WM, Nunley JA. Describing the medial longitudinal arch using footprint indices and a clinical grading system. Foot Ankle Int. 2007; 28(4): 456–62. https://doi.org/10.3113/fai.2007.0456
Domínguez-Morales MJ, Luna-Perejón F, Miró-Amarante L, Hernández-Velázquez M, Sevillano-Ramos JL. Smart footwear insole for recognition of foot pronation and supination using neural networks. Appl Sci. 2019; 9(19): 3970. https://doi.org/10.3390/app9193970
Barton JG, Lees A. Development of a connectionist expert system to identify foot problems based on under-foot pressure patterns. Clin Biomech. 1995; 10(7): 385–91. https://doi.org/10.1016/0268-0033(95)00015-d
Xu S, Zhou X, Sun Y-N. A novel gait analysis system based on adaptive neuro-fuzzy inference system. Expert Syst Appl. 2010; 37(2): 1265–9. https://doi.org/10.1016/j.eswa.2009.06.026
AL-Dabagh samar Y, ALjaber NA, AL-Hassnawy GO. Designing and Constructing the Strain Sensor Using Microbend Multimode Fiber . Baghdad Sci J. 2018; 15(2): 0217. https://doi.org/10.21123/bsj.2018.15.2.0217