طريقة هجينة لخوارزمية الـ D-CNN1 والتعلم الآلي للكشف عن سرطان الثدي

المؤلفون

  • Ahmed Adil Nafea قسم الذكاء الاصطناعي، كلية علوم الحاسوب وتكنولوجيا المعلومات، جامعة الانبار، الرمادي، العراق. https://orcid.org/0000-0003-2293-1108
  • Manar AL-Mahdawi كلية العلوم، جامعة النهرين، بغداد، العراق
  • Khattab M Ali Alheeti قسم علوم الحاسوب، جامعة الأنبار، الرمادي، العراق
  • Mustafa S. Ibrahim Alsumaidaie قسم علوم الحاسوب، جامعة الأنبار، الرمادي، العراق
  • Mohammed M AL-Ani مركز تكنولوجيا الذكاء الاصطناعي، كلية علوم وتكنولوجيا المعلومات، جامعة كيبانجسان الماليزية، بانجي، سيلانجور، ماليزيا.

DOI:

https://doi.org/10.21123/bsj.2024.9443

الكلمات المفتاحية:

تشخيص سرطان الثدي، التعلم العميق، التعلم الآلي، ويسكونسن، D-CNN1

الملخص

يعد سرطان الثدي من المخاوف الصحية ذات الأهمية، ومن الضروري اكتشافه مبكرًا للحصول على علاج فعال. في الآونة الأخيرة، كان هناك اهتمام متزايد باستخدام الذكاء الاصطناعي (AI) للكشف عن سرطان الثدي، مما أظهر نتائج في تعزيز الدقة وتقليل النتائج الإيجابية الخاطئة. ومع ذلك، هناك بعض القيود فيما يتعلق بدقة الكشف. تقدم هذه الدراسة منهجًا هجيناً يستخدم 1D CNN  لاستخراج الميزات ويستخدم خوارزميات التعلم الآلي مثل XGBoost والغابات العشوائية (RF) وأشجار القرار (DT) وآلات ناقلات الدعم (SVM) و أقرب جار (KNN) لتصنيف العينات إما حميدة أو خبيثة تهدف إلى تعزيز الدقة في الكشف. تكشف النتائج التي توصلنا إليها أن خوارزمية XGBoost مع استخراج الميزات (D CNN1) حققت دقة قدرها 98.24% في مجموعة الاختبار. تسلط هذه الدراسة الضوء على جدوى استخدام خوارزميات التعلم الآلي والتعلم العميق في هذه الدراسة تم استخدام مجموعة بيانات سرطان الثدي في ولاية ويسكونسن (WBC)، للكشف عن سرطان الثدي. يبشر نهجنا بالوعد في تسهيل الكشف وتحسين النتائج من خلال توفير أدوات دقيقة وموثوقة لتشخيص سرطان الثدي.

المراجع

Waks AG, Winer EP. Breast cancer treatment: a review. Jama. 2019; 321(3): 288–300. https://doi.org/10.1001/jama.2018.19323

Averbuch T, Sullivan K, Sauer A, Mamas MA, Voors AA, Gale CP, et al. Applications of artificial intelligence and machine learning in heart failure. Eur hear J health. 2022; 3(2): 311–22. https://doi.org/10.1093/ehjdh/ztac025

Chen K, Zhai X, Wang S, Li X, Lu Z, Xia D, et al. Emerging trends and research foci of deep learning in spine: bibliometric and visualization study. Neurosurg Rev. 2023; 46(1): 81. https://doi.org/10.1007/s10143-023-01987-5

Arshad MW. Prediction and diagnosis of breast cancer using machine learning and ensemble classifiers. Cent Asian J Math Theory Comput Sci. 2023; 4(1): 49–56. https://doi.org/10.17605/OSF.IO/9CFN6

Teixeira F, Montenegro JLZ, da Costa CA, da Rosa Righi R. An analysis of machine learning classifiers in breast cancer diagnosis. In: 2019 XLV Latin American computing conference (CLEI). IEEE; 2019: 1–10. https://doi.org/10.1109/CLEI47609.2019.235094

Elsadig MA, Altigani A, Elshoush HT. Breast cancer detection using machine learning approaches: a comparative study. Int J Electr Comput Eng. 2023; 13(1): 736-45. https://doi.org/10.11591/ijece.v13i1.pp736-745

Chen H, Wang N, Du X, Mei K, Zhou Y, Cai G. Classification prediction of breast cancer based on machine learning. Comput Intell Neurosci. 2023; 2023. https://doi.org/10.1155/2023/6530719

Sakib S, Yasmin N, Tanzeem AK, Shorna F, Hasib K MD, Alam SB. Breast cancer detection and classification: A comparative analysis using machine learning algorithms. In: Proceedings of Third International Conference on Communication, Computing and Electronics Systems: ICCCES 2021. Springer; 2022: 703–17. https://doi.org/10.1007/978-981-16-8862-1_46

Abiodun MK, Misra S, Awotunde JB, Adewole S, Joshua A, Oluranti J. Comparing the performance of various supervised machine learning techniques for early detection of breast cancer. In: International Conference on Hybrid Intelligent Systems. Springer; 2021: 473–82. https://doi.org/10.1007/978-3-030-96305-7_44

Sridevi T, Murugan A. An intelligent classifier for breast cancer diagnosis based on K-Means clustering and rough set. Int J Comput Appl. 2014; 85(11). https://doi.org/10.5120/14889-3336

Henderi H, Wahyuningsih T, Rahwanto E. Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. Int J Informatics Inf Syst. 2021; 4(1): 13–20. https://doi.org/10.47738/ijiis.v4i1.73

Kareem AK, Al-ani MM, Nafea AA. Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network. Baghdad Sci J. 2023; 20: 1182–93. https://doi.org/10.21123/bsj.2023.8564

Alajanbi M, Malerba D, Liu H. Distributed reduced convolution neural networks. Mesopotamian J Big Data. 2021; 2021: 26–9. https://doi.org/10.58496/MJBD/2021/005

Dabiri H, Farhangi V, Moradi MJ, Zadehmohamad M, Karakouzian M. Applications of Decision Tree and Random Forest as Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforcement Bars. Appl Sci. 2022; 12(10): 4851. https://doi.org/10.3390/app12104851

Charbuty B, Abdulazeez A. Classification based on decision tree algorithm for machine learning. J Appl Sci Technol Trends. 2021; 2(01): 20–8. https://doi.org/10.38094/jastt20165

Chandrahas NS, Choudhary BS, Teja MV, Venkataramayya MS, Prasad NSRK. XG boost algorithm to simultaneous prediction of rock fragmentation and induced ground vibration using unique blast data. Appl Sci. 2022; 12(10): 5269. https://doi.org/10.3390/app12105269

Roy A, Chakraborty S. Support vector machine in structural reliability analysis: A review. Reliab Eng Syst Saf. 2023; 233:109126. https://doi.org/10.1016/j.ress.2023.109126

Kurani A, Doshi P, Vakharia A, Shah M. A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Ann Data Sci. 2023;10(1):183–208. https://doi.org/10.1007/s40745-021-00344-x

Lubis AR, Lubis M. Optimization of distance formula in K-Nearest Neighbor method. Bull Electr Eng Informatics. 2020; 9(1) :326–38. https://doi.org/10.11591/eei.v9i1.1464

ElSahly O, Abdelfatah A. An incident detection model using random forest classifier. Smart Cities.2023;6(4): 1786–813.https://doi.org/10.3390/smartcities6040083

Mukhlif AA, Al-Khateeb B, Mohammed M. Classification of breast cancer images using new transfer learning techniques. Iraqi J Comput Sci Math. 2023; 4(1): 167–80. https://doi.org/10.52866/ijcsm.2023.01.01.0014

Nafea AA, Omar N, Al-qfail ZM. Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection. Baghdad Sci J. 2024; 21(1), pp.0226-0233. https://doi.org/10.21123/bsj.2023.7988

Li JP, Haq AU, Din SU, Khan J, Khan A, Saboor A. Heart disease identification method using machine learning classification in e-healthcare. IEEE access. 2020; 8 :107562–82. https://doi.org/10.1109/ACCESS.2020.3001149

Trivedi NK, Gautam V, Anand A, Aljahdali HM, Villar SG, Anand D, et al. Early detection and classification of tomato leaf disease using high-performance deep neural network. Sensors. 2021;21(23):7987. https://doi.org/10.3390/s21237987

Nafea AA, Mishlish M, Muwafaq A, Shaban S, Al-ani MM, Alheeti KMA, et al. Enhancing Student ’ s Performance Classification Using Ensemble Modeling. Iraqi J Comput Sci Math. 2023; 4(4): 204–14.https://doi.org/10.52866/%20ijcsm.2023.04.04.016

التنزيلات

منشور

2024-10-01

إصدار

القسم

article

كيفية الاقتباس

1.
طريقة هجينة لخوارزمية الـ D-CNN1 والتعلم الآلي للكشف عن سرطان الثدي. Baghdad Sci.J [انترنت]. 1 أكتوبر، 2024 [وثق 16 نوفمبر، 2024];21(10):3333. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9443

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.