دراسة دور بعض المؤشرات الحيوية في تقييم آثار تلوث الهواء المقترحة في مناطق مختارة من محافظة أربيل

المؤلفون

  • Jamal Kamal Mohammedamin قسم علوم البيئة والصحة، كلية العلوم، جامعة صلاح الدين، اربيل، العراق. https://orcid.org/0009-0003-4929-9090
  • Yahya Ahmed Shekha قسم علوم البيئة والصحة، كلية العلوم، جامعة صلاح الدين، اربيل، العراق.

DOI:

https://doi.org/10.21123/bsj.2024.9727

الكلمات المفتاحية:

الزلال، الدلائل الحيوية، الكرياتينين، هيدروكسي برولين، مالونديالدهيد

الملخص

يهدف الدراسة الحالية الى تقييم المستويات هيدروكسي برولين البولي ، ومالونديالديهايد البولي ، والكرياتينين البولي  والألبومين البولي كمؤشرات حيوية محتملة لتلوث الهواء في موقعين متميزين: الموقع 1  المنطقة الصناعية والموقع 2 المنطقة الغير الصناعية ، أيضًا تم قياس نسبة الألبومين إلى الكرياتينين (UACR) في البول وذلك لمزيد من التحري في تأثيرات تلوث الهواء. تم استخدام تصميم مقطعي في هذه الدراسة بمجموع  تسعين مشاركًا. في الموقع 1  كان هناك 56 مشاركًا يشمل 42 بالغًا و 14 طفلاً ، والتي بلغت حوالي 11.2% من إجمالي السكان. وفي الوقت نفسه في الموقع 2 كان هناك 34   مشاركًا يشمل 23 بالغًا و 11 طفلاً، يمثلون حوالي 11.3٪ من السكان. أشارت نتائج هذه الدراسة إلى أن تراكيز الهيدروكسي برولين و المالونديالدهيد كانت أعلى بشكل ملحوظ في الموقع 1 لكل من البالغين والأطفال مقارنة بالموقع 2. وهذا يشير إلى أن هذه المؤشرات الحيوية أكثر حساسية للتلوث الهواء في المناطق الصناعية. ومن جهة أخرى وجد أن تراكيز الكرياتينين والألبومين أعلى في الموقع 1  مقارنتا بالموقع 2 لكل من البالغين والأطفال على الرغم من عدم وجود فروقات الاحصائية. تم قياس قيم UACR في الموقع 1 والموقع 2 بالنسبة للبالغين ، كانت قيم UACR 10.093 و 8.870 mg/gعلى التوالي ، بينما للأطفال كانت 11.061 و 9.882 mg/g على التوالي. كانت جميع القيم ضمن المدى الطبيعي ، مما يشير إلى أن تلوث الهواء لم يؤثر بشكل كبير على وظائف الكلى في السكان المدروسة. يمكن أن تشير مستويات الهيدروكسي برولين المرتفعة إلى تغيرات في أيض الكولاجين، والتي يمكن ربطها بتلف الأنسجة الناجم عن تلوث الهواء. تشير زيادة مستويات المالونديالدهيد إلى زيادة الإجهاد التأكسدي وتدهور المكونات الخلوية، مما يعني تأثير تلوث الهواء على تراكيب الدهنية. يعد ارتفاع مستويات الألبومين في البول علامة حساسة لإصابة الكلى أو خلل وظيفي ناتج عن التعرض لتلوث الهواء، دلالة على الآثار السلبية على وظائف الكلى.

المراجع

Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009; 374(9691): 733-743. https://doi.org/10.1016/S0140-6736(09)61303-9

Depledge MH. The rational basis for the use of biomarkers as ecotoxicological tools. Nondestructive biomarkers in vertebrates: CRC Press; 2020. p. 271-295.

Brucker N, do Nascimento SN, Bernardini L, Charão MF, Garcia SC. Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic‐related air pollution: A review. J Appl Toxicol. 2020; 40(6): 722-736. https://doi.org/10.1002/jat.3940

Feretti D, Pedrazzani R, Ceretti E, Dal Grande M, Zerbini I, Viola GCV, et al. “Risk is in the air”: polycyclic aromatic hydrocarbons, metals and mutagenicity of atmospheric particulate matter in a town of Northern Italy (Respira study). Mutat Res Genet Toxicol Environ Mutagen. 2019; 842: 35-49. https://doi.org/10.1016/j.mrgentox.2018.11.002

Costa S, Costa C, Madureira J, Valdiglesias V, Teixeira-Gomes A, de Pinho PG, et al. Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility. Environ Res. 2019; 179, p.108740. https://doi.org/10.1016/j.envres.2019.108740

Santonen T, Schoeters G, Nordberg M. Biological monitoring of metals and biomarkers. Handbook on the Toxicology of Metals: Elsevier; 2022. p. 217-235.

Ladeira C, Viegas S. Human biomonitoring: an overview on biomarkers and their application in occupational and environmental health. Biomonitoring. 2016; 3(1): 15-24. http://hdl.handle.net/10400.21/6707

Apel P, Rousselle C, Lange R, Sissoko F, Kolossa-Gehring M, Ougier E. Human biomonitoring initiative (HBM4EU)-strategy to derive human biomonitoring guidance values (HBM-GVs) for health risk assessment. Int J Hyg Environ. Health. 2020, 230: p.113622. https://doi.org/10.1016/j.ijheh.2020.113622

Alves VR, Gonçalves S, Daguer H, Micke GA, Vitali L. Development of a new method for the determination of 4-hydroxyproline as a measurement of collagen content in meat products and dietary supplements by cyclodextrin-assisted electrokinetic chromatography. J Food Compost Anal. 2023; 122, p.105431. https://doi.org/10.1016/j.jfca.2023.105431

Mahdi QA, Wadood SA, Hamza RH. Association Between Systemic and Local Oxidative Stress of Infertile Women Undergoing Ivf/Icsi. Iraqi J Sci. 2019; 60 (9): 1888-1897. https://doi.org/10.24996/ijs.2019.60.9.1

Mustafa AJ, Ismail PA. Association of potent inflammatory Cytokine and Oxidative DNA Damage Biomarkers in Stomach cancer patients. Baghdad Sci J. 2022; 19(6): 1313-1325. https://dx.doi.org/10.21123/bsj.2022.6589

Al‑Khafaji AS, Hade IM, Al‑Naqqash MA, Alnefaie GO. Potential effects of miR‑146 expression in relation to malondialdehyde as a biomarker for oxidative damage in patients with breast cancer. World Acad Sci J. 2023; 5(1): 1-9. https://doi.org/10.3892/wasj.2023.187

Ascar IF, Khaleel FM, Hameed AS, Alabboodi MK. Evaluation of Some Antioxidants and Oxidative Stress Tests in Iraqi Lung Cancer Patients. Baghdad Sci J. 2022. 2022; 19(6 (Suppl.)): 1466-1470. https://dx.doi.org/10.21123/bsj.2022.7597

Bai VL, Krishnan SA. Role of creatine in the body and its Creatinine clearance in humans and animals. Int J Pharm. Res Appl. 2022; 7(5): 286-296. https://doi.org/10.35629/7781-0705286296

Tesch GH. Serum and urine biomarkers of kidney disease: A pathophysiological perspective. Nephrol. 2010; 15(6): 609-616. https://doi.org/10.1111/j.1440-1797.2010.01361.x

Li A, Mei Y, Zhao M, Xu J, Li R, Zhao J, et al. Associations between air pollutant exposure and renal function: A prospective study of older adults without chronic kidney disease. Environ Pollut. 2021; 277, p. 116750. https://doi.org/10.1016/j.envpol.2021.116750

Hu W, Wang Y, Wang T, Ji Q, Jia Q, Meng T, et al. Ambient particulate matter compositions and increased oxidative stress: Exposure-response analysis among high-level exposed population. Environ Int. 2021; 147, p.106341. https://doi.org/10.1016/j.envint.2020.106341

Zhang Y, Wang J, Gong X, Chen L, Zhang B, Wang Q, et al. Ambient PM2. 5 exposures and systemic biomarkers of lipid peroxidation and total antioxidant capacity in early pregnancy. Environ Int. 2020; 266, p.115301.https://doi.org/10.1016/j.envpol.2020.115301

Jalali-Mashayekhi F. Oxidative toxic stress and p53 level in healthy subjects occupationally exposed to outdoor air Pollution–a cross-sectional study in Iran. Ann Agric Environ Med . 2020; 27(4): 585-590. https://doi.org/10.26444/aaem/126313

Wu M-Y, Lo W-C, Chao C-T, Wu M-S, Chiang C-K. Association between air pollutants and development of chronic kidney disease: a systematic review and meta-analysis. Sci Total Environ. 2020; 706, p.135522. https://doi.org/10.1016/j.scitotenv.2019.135522

Perdelli F, Cristina ML, Sartini M, Orlando P. Urinary hydroxyproline as a biomarker of effect after exposure to nitrogen dioxide. Toxicol Lett. 2002; 134(1-3): 319-323. https://doi.org/10.1016/S0378-4274(02)00208-4

Hassan MKR. Urban environmental problems in cities of the Kurdistan region in Iraq. Local Environ. 2010; 15(1): 59-72. https://doi.org/10.1080/13549830903406073

Weitner T, Inić S, Jablan J, Gabričević M, Domijan A-M. Spectrophotometric determination of malondialdehyde in urine suitable for epidemiological studies. Croat Chem Acta. 2016; 89(1): 133-139. https://doi.org/10.5562/cca2902

Weaver AM, Wang Y, Wellenius GA, Young B, Boyle LD, Hickson DA, et al. Long-term exposure to ambient air pollution and renal function in African Americans: the Jackson Heart Study. J Expo Sci Environ Epidemiol. 2019; 29(4): 548-556.

Hilbrands L, Budde K, Bellini MI, Diekmann F, Furian L, Grinyó J, et al. Allograft function as endpoint for clinical trials in kidney transplantation. Transpl Int; 2022. p. 10139. https://doi.org/10.3389/ti.2022.10139

Qin Z, Chang K, Yang Q, Yu Q, Liao R, Su B. The association between weight-adjusted-waist index and increased urinary Albumin excretion in adults: A population-based study. Front Nutr. 2022; 9, p.941926. https://doi.org/10.3389/fnut.2022.941926

Kiapidou S, Liava C, Kalogirou M, Akriviadis E, Sinakos E. Chronic kidney disease in patients with non-alcoholic fatty liver disease: What the Hepatologist should know? Ann Hepatol. 2020; 19(2): 134-144. https://doi.org/10.1016/j.aohep.2019.07.013

Perdelli F, Cristina ML, Sartini M, Orlando P. Urinary hydroxyproline as a biomarker of effect after exposure to nitrogen dioxide. Toxicol Lett. 2002; 134(1-3): 319-323. https://doi.org/10.1016/S0378-4274(02)00208-4

Azari MR, Williams FM, Blain PG, Edwards JW. Potential biomarkers of exposure and effect among glass craftsmen and braziers exposed to nitrogen oxides. Biomarkers. 1997; 2(6): 349-354. https://doi.org/10.1080/135475097231436

Adgate JL, Reid HF, Morris R, Helms RW, Berg RA, Hu P-C, et al. Nitrogen dioxide exposure and urinary excretion of hydroxyproline and desmosine. Arch Environ Health. 1992; 47(5): 376-384. https://doi.org/10.1080/00039896.1992.9938378

Lochmann U. NO2 exposure and hydroxyproline excretion. Z Gesamte Hyg. 1990;36(9):481-483.

Kawamoto T, Matsuno K, Arashidani K, Yoshikawa M, Kayama F, Kodama Y. Personal exposure to nitrogen dioxide from indoor heaters and cooking stoves. Arch Environ Contam Toxicol. 1993; 25: 534-538. https://doi.org/10.1007/BF00214345

Kuang H, Liu J, Zeng Y, Zhou W, Wu P, Tan J, et al. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene may impair lung function by increasing oxidative damage and airway inflammation in asthmatic children. Environ Pollut. 2020; 266, p. 115220. https://doi.org/10.1016/j.envpol.2020.115220

Okeleji LO, Ajayi AF, Adebayo-Gege G, Aremu VO, Adebayo OI, Adebayo ET. Epidemiologic evidence linking oxidative stress and pulmonary function in healthy populations. Chronic Dis Transl Med. 2021; 7(2): 88-99. https://doi.org/10.1016/j.cdtm.2020.11.004

de Oliveira Alves N, Pereira GM, Di Domenico M, Costanzo G, Benevenuto S, de Oliveira Fonoff AM, et al. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. Environ Int. 2020; 145, p.106150. https://doi.org/10.1016/j.envint.2020.106150

Ba AN, Verdin A, Cazier F, Garcon G, Thomas J, Cabral M, et al. Individual exposure level following indoor and outdoor air pollution exposure in Dakar (Senegal). Environ Pollut. 2019; 248: 397-407. https://doi.org/10.1016/j.envpol.2019.02.042

Knaapen AM, Borm PJ, Albrecht C, Schins RP. Inhaled particles and lung cancer. Part A: Mechanisms. Int J Cancer. 2004; 109(6): 799-809. https://doi.org/10.1002/ijc.11708

Niranjan R, Thakur AK. The toxicological mechanisms of environmental soot (black carbon) and carbon black: focus on oxidative stress and inflammatory pathways. Front Immunol. 2017; 8, p.763. https://doi.org/10.3389/fimmu.2017.00763

Bevan GH, Al-Kindi SG, Brook RD, Münzel T, Rajagopalan S. Ambient air pollution and atherosclerosis: insights into dose, time, and mechanisms. Arterioscler Thromb Vasc Biol. 2021; 41(2): 628-637. https://doi.org/10.1161/ATVBAHA.120.315219

Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. Particulate matter induces tissue oxinflammation: from mechanism to damage. Antioxid Redox Signal. 2020; 33(4): 308-326. https://doi.org/10.1089/ars.2019.8015

Cáceres L, Paz ML, Garcés M, Calabró V, Magnani ND, Martinefski M, et al. NADPH oxidase and mitochondria are relevant sources of superoxide anion in the oxinflammatory response of macrophages exposed to airborne particulate matter. Ecotoxicol Environ Saf. 2020; 205, p.111186. https://doi.org/10.1016/j.ecoenv.2020.111186

Kim H, Kim W-H, Kim Y-Y, Park H-Y. Air pollution and central nervous system disease: a review of the impact of fine particulate matter on neurological disorders. Front Public Health. 2020; 8, p.575330. https://doi.org/10.3389/fpubh.2020.575330

Flood-Garibay JA, Angulo-Molina A, Méndez-Rojas MÁ. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. Environ Sci Process Impacts . 2023; 25(4): 704-726. https://doi.org/10.1039/D2EM00276K

Niu B-Y, Li W-K, Li J-S, Hong Q-H, Khodahemmati S, Gao J-F, et al. Effects of DNA damage and oxidative stress in human bronchial epithelial cells exposed to PM2. 5 from Beijing, China, in winter. Int J Environ Res Public Health. 2020; 17(13), p.4874. https://doi.org/10.3390/ijerph17134874

Su L-J, Zhang J-H, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019, p.2019. https://doi.org/10.1155/2019/5080843

Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, et al. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med. 2022; 85, p.101026.

Li Z, Liu Q, Xu Z, Guo X, Wu S. Association between short-term exposure to ambient particulate air pollution and biomarkers of oxidative stress: a meta-analysis. Environ Res. 2020; 191, p.110105. https://doi.org/10.1016/j.envres.2020.110105

Lin W, Zhu T, Xue T, Peng W, Brunekreef B, Gehring U, et al. Association between changes in exposure to air pollution and biomarkers of oxidative stress in children before and during the Beijing Olympics. Am J Epidemiol. 2015; 181(8): 575-583. https://doi.org/10.1093/aje/kwu327

Gokirmak M, Yildirim Z, Hasanoglu HC, Koksal N, Mehmet N. The role of oxidative stress in bronchoconstriction due to occupational sulfur dioxide exposure. Clin Chim Acta. 2003; 331(1-2): 119-126. https://doi.org/10.1016/S0009-8981(03)00117-7

Blum MF, Surapaneni A, Stewart JD, Liao D, Yanosky JD, Whitsel EA, et al. Particulate matter and Albuminuria, glomerular filtration rate, and incident CKD. Clin J Am Soc Nephrol. 2020; 15(3): 311-319.

Okoye OC, Carnegie E, Mora L. Air pollution and chronic kidney disease risk in oil and gas-situated communities: A systematic review and meta-analysis. Int J Public Health.. 2022; 67, p.1604522. https://doi.org/10.3389/ijph.2022.1604522

Chin W-S, Chang Y-K, Huang L-F, Tsui H-C, Hsu C-C, Guo Y-LL. Effects of long-term exposure to CO and PM2. 5 on microAlbuminuria in type 2 diabetes. Int J Hyg Environ Health. 2018; 221(4): 602-608. https://doi.org/10.1016/j.ijheh.2018.04.009

O’Neill MS, Diez-Roux AV, Auchincloss AH, Franklin TG, Jacobs D, Astor BC, et al. Airborne particulate matter exposure and urinary Albumin excretion: the Multi-Ethnic Study of Atherosclerosis. Occup Environ Med. 2008; 65(8): 534-540. http://dx.doi.org/10.1136/oem.2007.035238

Li A, Zhao J, Liu L, Mei Y, Zhou Q, Zhao M, et al. Association of metals and metalloids with urinary Albumin/Creatinine ratio: evidence from a cross-sectional study among elderly in Beijing. Front Public Health. 2022; 10, p.832079. https://doi.org/10.3389/fpubh.2022.832079

التنزيلات

كيفية الاقتباس

1.
دراسة دور بعض المؤشرات الحيوية في تقييم آثار تلوث الهواء المقترحة في مناطق مختارة من محافظة أربيل. Baghdad Sci.J [انترنت]. [وثق 12 مارس، 2025];22(1). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9727