نمو بادرات البذور المنشطة تحت إجهاد الجفاف في الذرة البيضاء
DOI:
https://doi.org/10.21123/bsj.2024.9951الكلمات المفتاحية:
الاجهاد المائي، البرولين، فواصل الري، الكاربوهيدات، كلوروفيلالملخص
يعد إجهاد الجفاف عاملاً محدداً خلال مراحل النمو المبكرة للذرة البيضاء. أجريت التجربة تحت الظروف الحقلية خلال العروتين الخريفية 2017 و 2018 في كلية علوم الهندسة الزراعية جامعة بغداد. كان الهدف هو تحسين نمو شتلات الذرة البيضاء وخواصها الكيميائية لتحمل إجهاد الجفاف. تمت دراسة ثلاث متغيرات: العامل الأول هو الأصناف (انقاذ، رابح، وبحوث70). والعامل الثاني هو تنشيط البذور (بذور منشطة وغير منشطة). تم تتنشيط البذور عن طريق النقع لمدة 12 ساعة في محلول يحتوي على 300 ملغم لتر-1 من أحماض الجبريليك (GA3) + 70 ملغم لتر-1 من الساليسيليك (SA). والعامل الثالث هو فترات الري (الري كل 2، 4، و 6 أيام) بكميات محسوبة لإيصال المحتوى الرطوبي إلى السعة الحقلية (100%) عند كل رية.. تم استخدام تصميم القطاعات الكاملة المعشاة بأربعة مكررات. أظهرت النتائج تباين الأصناف في قدرتها على تحمل إجهاد الجفاف، كما أدى تنشيط البذور إلى تحسين أدائها لتحمل إجهاد الجفاف مقارنة بالبذور غير المنشطة في كلا العروتين وذلك بإعطاء أعلى قيم لارتفاع النبات والمساحة الورقية ووزن البادرات الجافة ومحتوى الكلوروفيل والكربوهيدرات والبرولين في الأوراق. ويزداد متوسط الصفات المدروسة مع تقليل فترات الري، باستثناء محتوى البرولين في الأوراق.، والذي يزداد مع زيادة فترات الري. وكان التداخل بين معاملات التنشيط وفترات الري معنوياً في معظم الصفات المدروسة. يمكن أن نستنتج أن التنشيط أدى إلى تحسين أداء البذور في تحمل إجهاد الجفاف مقارنة بالبذور غير المنشطة.
Received 14/10/2023
Revised 29/03/2024
Accepted 31/03/2024
Published Online First 20/05/2024
المراجع
Mahmoud SN. Evaluation of bread wheat Triticum aestivum L. callus genotypes for water stress tolerance using polyethylene glycol (PEG). Baghdad Sci J. 2012; 9(3): 391-6. https://doi.org/10.21123/bsj.2012.9.3.391-396
Badawi MA. Seadh SE Emhimmid W. Improvement wheat germination by using some biostimulants substances. J Plant Prod. 2020; 11(2): 139-144. https://doi.org/10.21608/jpp.2020.79107
Dawood MG. Stimulating Plant Tolerance Against Abiotic Stress Through Seed Priming. 2018; 147-183. In: Rakshit, A., Singh, H. (eds) Advances in Seed Priming. Springer, Singapore. https://doi.org/10.1007/978-981-13-0032-5_10
Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J. Seed priming: a feasible strategy to enhance drought tolerance in crop plants. Int J Mol Sci. 2020; 21(21): 8258. https://doi.org/10.3390/ijms21218258
Verma SK, Verma M. A textbook of plant physiology, biochemistry and biotechnology. New Delhi: S. Chand Publishing; 2008. p. 238.
Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. S Afr J Bot. 2009; (75): 34-42. https://doi.org/10.1016/j.sajb.2008.06.005
Bahrabadi E, Tavakkol AR, Nassiri MM, Seyyedi SM. Abscisic, gibberellic, and salicylic acids effects on germination indices of corn under salinity and drought stresses. J Crop Improv. 2022; 36(1): 73-89. https://doi.org/10.1080/15427528.2021.1908474
Shihab MO, Hamza JH. Field emergence in primed seed of sorghum cultivars to tolerate drought stress.DASJ. 2020; 12(special issue): 299-314. https://doi.org/10.52951/dasj.20121026
Tahaei SA, Nasri M, Soleymani A, Ghooshchi F, Oveysi M. Plant growth regulators affecting corn (Zea mays L.) physiology and rab17 expression under drought conditions. Biocatal Agric Biotechnol. 2022; 41: 102288. https://doi.org/10.1016/j.bcab.2022.102288
UÇARLI C. Physiological and molecular effects of exogenous gibberellin (GA3) treatment on germination of barley seeds under salt stress. ADYU J Sci. 2021; 11(2): 227-43. https://doi.org/10.37094/adyujsci.904266
Nciizah AD, Rapetsoa MC, Wakindiki IIC, Zerizghy MG. Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon. 2020; 6(8), e04766. https://doi.org/10.1016/j.heliyon.2020.e04766
Tian Y, Gama-Arachchige N S, Zhao M. Trends in seed priming research in the past 30 years based on bibliometric analysis. Plants. 2023; 12(19): 3483. https://doi.org/10.3390/plants12193483
Singh V, Sharma M, Upadhyay H, Siddique A. Ameliorative effect of seed priming on germination, vigour index and tolerance index against short term moisture stress in maize (Zea mays L.). Indian J Agric Res. 2020; 54(3): 378-382. http://doi.org/10.18805/IJARe.A-5351
Pinheiro CL, Araújo HTN, Brito SF, Maia MS, Viana JS, Filho SM. Seed priming and tolerance to salt and water stress in divergent grain sorghum genotypes. Am J Plant Sci. 2018; 9(4): 606-616. https://doi.org/10.4236/ajps.2018.94047
Saudi AH, Al-Rawi ASM. Effect of seed priming duration with bio-stimulator (appetizer) on germination characteristics and seedling emergence of sorghum. IOP Conf Ser.: Earth Environ Sci. 2023; 1262 (52023): 0520344. http://doi.org/10.1088/1755-1315/1262/5/052034
AL-Jobori KMM. Effect of hardening to drought tolerance on the moisture content of sunflower plant. III. Moisture percentage in whole plant. Baghdad Sci J. 2010; 7(2): 888-94. https://doi.org/10.21123/bsj.2010.7.2.888-894
Al-Khafajy MJ. Majeed HA. Mutlag NA. Cheyed SH. Wheat seed deterioration stimulated by plant extracts. Bionatura. 2022; 7(4): 15. http://dx.doi.org/10.21931/RB/2022.07.04.15
Kadhim JJ, Hamza JH. Effect of maize seeds soaking with acids of ascorbic, citric and humic on field emergence. Iraqi J Agric Sci. 2021; 52(4): 971–976. https://doi.org/10.36103/ijas.v52i4.1407
Kadhim JJ, Hamza JH. Effect of seeds soaking and vegetative parts nutrition with acids of ascorbic, citric and humic on maize growth. Iraqi J Agric Sci. 2021; 52(5): 1207–1218. https://doi.org/10.36103/ijas.v52i5.1458
Jadoo KhA, Alowan AL. Hormonal regulation of tillering in sorghum (Sorghum bicolor L. Moench) and its influence on grain yield and its components. Iraqi J Agric Sci. 2015; 46(3): 300-311.
Al-rawi ASM, Hussain AM. Response of soaking with (acadian) on seed vigor of wheat under salt stress. Iraq J Market Res Consumer Protection. 2023; 15(1): 184-192. http://dx.doi.org/10.28936/jmracpc15.1.2023.(16)
Jaddoa KA, Najem RR. Effect of seed priming on germination, emergence of seedlings and grain yield of sorghum. Iraqi J Agric Sci. 2017; 48(4): 899-909.
Hamza IA, Ali RJ. Priming of genetic variations by colocynth fruit extract and callus initiation in embryos of two cultivars of alfalfa seeds. Iraqi J Agric Sci. 2017; 48(3): 749-764. https://doi.org/10.36103/ijas.v48i3.388
Zhu G, An L, Jiao X, Chen X, Zhou G, McLaughlin N. Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chil J Agric Res. 2019; 79(3): 415-424. http://doi.org/10.4067/S0718-58392019000300415
Rajabi DA, Zahedi M, Ludwiczak A, Cardenas PS, Piernik A. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor L. Moench) genotypes. Agro. 2020; 10(6): 859. https://doi.org/10.3390/agronomy10060859
Saddiq MS., Iqbal S, Afzal I, Ibrahim AMH, Bakhtavar MA, Hafeez MB, et al. Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements. J Plant Nutr. 2019; 42(10): 1192-1204. https://doi.org/10.1080/01904167.2019.1609509
Anaya F, Fghire R, Wahbi S, Loutfi K. Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. J Saudi Soc Agric Sci. 2018; 17(1): 1-8. https://doi.org/10.1016/j.jssas.2015.10.002
Maswada HF, Djanaguiraman M, Prasad PVV. Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J Agro Crop Sci. 2018; 204(6): 577–587. https://doi.org/10.1111/jac.12280
Lone R, Hassan N, Bashir B, Rohela GK, Malla NA. Role of growth elicitors and microbes in stress management and sustainable production of sorghum. Plant Stress. 2023; 9(2023): 100179. https://doi.org/10.1016/j.stress.2023.100179
Ali MA, Abdulateef MA, Mohammad AK, Yahya SI. Crop seed sizes and their role in the productivity of field crops: A review article. NTU J Agric Vet Sci. 2022; 2(2): 62-70. https://doi.org/10.56286/ntujavs.v2i2.370
Akinnuoye DB, Modi AT. Germination characteristics of SC701 maize hybrid according to size and shape at different temperature regimes. Plant Prod Sci. 2015; 18(4): 514-521. https://doi.org/10.1626/pps.18.514
Farooq M, Usman M, Nadeem F, Rehman H, Wahid A, Basra SMA, et al Seed priming in field crops: potential benefits, adoption and challenges. Crop Pasture Sci. 2019; 70(9): 731-771. https://doi.org/10.1071/CP18604
Noli E, Beltrami E, Casarini E, Urso G, Conti S. Reliability of early and final counts in cold and cool germination tests for predicting maize seed vigour. Ital J Agron. 2010; 5(4): 383-392. https://doi.org/10.4081/ija.2010.383
Diaguna R, Widajati E, Permatasari OSI, Suhartanto MR, Suwarno PM, Budiman C, et al Radicle emergence test method for estimating sorghum seeds quality: A tropics practices. J Stored Prod Res. 2024; 105: 102263. https://doi.org/10.1016/j.jspr.2024.102263
Dawood AAR, Rasheed AA. Effect of seed treatment and seed size on seed vigor, field emergence and grain yield of sorghum. Iraqi J Agric Sci. 2015; 46(3): 350-361. https://www.iasj.net/iasj/article/101091
Ge JY, Zhang B, Khan TA, Wang X, Ren QJ, Jia PF, et al. Effects of GA3 and ABA on the germination of dormant oat (Avena sativa L.) seeds. Appl Ecol Environ Res. 2019; 17(5): 11175-11189. http://dx.doi.org/10.15666/aeer/1705_1117511189
Yildirim C, Yildirim MB, Aydinoğlu B. The effects of gibberellic acid (GA3) treatments on germination and seedling development of sorghum [Sorghum bicolor L. Moench] seeds at different salt concentrations. Turk J Agric Res. 2022; 9(3): 323-333. https://doi.org/10.19159/tutad.1128902
Tsegay BA, Andargie M. Seed priming with gibberellic acid (GA3) alleviates salinity induced inhibition of germination and seedling growth of Zea mays L, Pisum sativum var. abyssinicum A. Braun and Lathyrus sativus L. J Crop Sci Biotechnol. 2018; 21: 261–267. https://doi.org/10.1007/s12892-018-0043-0
Chauhan A, AbuAmarah BA, Kumar A, Verma JS, Ghramh HA, Khan KA, et al. Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi J Biol Sci. 2019; 26(6): 1298-1304. https://doi.org/10.1016/j.sjbs.2019.04.014
Nimir NEA, Zhou G, Zhu G, Ibrahim ME. Response of some sorghum varieties to GA3 concentrations under different salt compositions. Chil J Agric Res. 2020; 80(4): 478-486. http://dx.doi.org/10.4067/S0718-58392020000400478
Chen X, Zhang R, Xing Y, Jiang B, Li B, Xu X, et al. The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS One. 2021; 16(1): e0245505. https://doi.org/10.1371%2Fjournal.pone.0245505
Kanjevac M, Bojović B, Jakovljević D. Improvement of physiological performance of selected cereals by modulating pregerminative metabolic activity in seeds. Cereal Res Commun. 2022; 50: 831–839. https://doi.org/10.1007/s42976-021-00213-6
Salih SM, Al-Abaied AI. Effect of adding SAP, ceratophyllum and water levels in some water parameters and consumption use for maize crop. Anbar J Agric Sci. 2020; 18(2): 230–243. https://doi.org/10.32649/aagrs.2022.170530
Liang GH, Chu CC, Reddi NS, Lin SS, Dayton AD. Leaf blade areas of grain sorghum varieties and hybrids. Agron J. 1973; 65: 456-459. https://doi.org/10.2134/agronj1973.00021962006500030030x
More AD, Borkar AT. Improvement in protein and chlorophyll content through physical and chemical mutagens in Phaseolus vulgaris L. Int J Curr Microbiol App Sci. 2016; 5(10): 583-591. http://dx.doi.org/10.20546/ijcmas.2016.510.065
Mansfield SD. Determination of total carbohydrates. In: Bärlocher F, Gessner M, Graça M. (eds) Methods to study litter decomposition. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-30515-4_14
Abrahám E, Hourton-Cabassa C, Erdei L, Szabados L. Methods for determination of proline in plants. Methods Mol Biol. 2010; 639: 317-31. https://doi.org/10.1007/978-1-60761-702-0_20
Steel RGD, Torrie JH, Dickey DA. Principles and procedures of statistics: a biometrical approach. 3rd ed. New York: McGraw-Hill. 1997; p. 666.
Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, Murata Y, et al. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants. 2021; 10(1):37. https://doi.org/10.3390/plants10010037
Arief R, Fatmawati. Syahruddin K, Fattah A. Improving sorghum seed vigor by priming. IOP Conf. Ser.: Earth Environ Sci. 2022; 1107 012014. https://doi.org/10.1088/1755-1315/1107/1/012014
Gano B, Dembele J S B, Tovignan T K, Sine B, Vadez V, Diouf D, et al. Adaptation responses to early drought stress of west Africa sorghum varieties. Agronomy. 2021; 11(3): 443-. https://doi.org/10.3390/agronomy11030443
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Mohammad Omar Shihab, Jalal Hameed Hamza, William Serson, Andre Amakobo Diatta, Martin Battaglia, Maythem Al-Amery, Hail Z Rihan
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.