Antioxidant Capacity of Benalu Duku Leaves Alcoholic Extract on SOD Level and Pancreatic Cytology in Induced Diabetic Rats
DOI:
https://doi.org/10.21123/bsj.2024.11608Keywords:
Dendrophthoe pentandra, Diabetic, Hematoxylin-eosin, Langerhans, Pancreatic, Superoxide Dismutase.Abstract
Diabetes mellitus causes damage to pancreatic β cells and oxidative stress due to an imbalance of oxidants and antioxidants in the body. Controlling hyperglycemia by administering conventional drugs and with long-term use carries the risk of side effects, so traditional treatment is recommended. Benalu Duku (Dendophthoe pentandra (L.) Miq) is a plant considered a parasite. However, it has the potential to be developed as a diabetes drug because it contains metabolites that can be used as drugs that come from nature. This study aims to test phytochemicals and examine the effect of ethanol extract of Benalu Duku leaves (EEBD) on superoxide dismutase (SOD) levels in streptozotocin-nicotinamide-induced diabetic white Wistar rats, blood glucose levels were also examined, as well as conducting histological analysis of pancreatic β cells. The results of the phytochemical examination showed that it contained alkaloids, flavonoids, glycosides, saponins, tannins, and triterpenoids. Research shows that giving EEBD for 28 days can significantly reduce blood glucose levels compared to the Na-CMC group. SOD levels also increased with respective values of 30.97 ± 0.84, 21.99 ± 0.61, 30.52 ± 1.30, 28.55 ± 1.30, 28.99 ± 0.95, and 29.00 ± 0.86 pg/mL. Pancreatic histology also showed differences between qualitative and quantitative, indicating pancreatic repair and increased surface area of the islets of Langerhans. This plant has the potential to be developed into a new medicinal ingredient that comes from nature.
Received 21/05/2024
Revised 27/07/2024
Accepted 29/07/2024
Published Online First 20/12/2024
References
Mauricio D, Alonso N, Gratacòs M. Chronic diabetes complications: the need to move beyond classical concepts. Trends Endocrinol Metab. 2020; 31(4): 287-295. https://doi.org/10.1016/j.tem.2020.01.007
Alam S, Hasan M K, Neaz S, Hussain N, Hossain M F, Rahman T. Diabetes mellitus: insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology. 2021; 2(2): 36-50. https://doi.org/10.3390/diabetology2020004
Mukai E, Fujimoto S, Inagaki N. Role of reactive oxygen species in glucose metabolism disorder in diabetic pancreatic β-cells. Biomolecules. 2022; 12(9): 1-15. https://doi.org/10.3390/biom12091228
Abed B A, Farhan L O, Dawood A S. Relationship between serum nesfatin-1, adiponectin, resistin concentration, and obesity with type 2 diabetes mellitus. Baghdad Sci J. 2023; 21(1): 117-123. https://doi.org/10.21123/bsj.2023.8119
Jabbar A A, Abdulrahman K K, Abdulsamad P, Mojarrad S, Mehmetçik G, Sardar A S. Phytochemical profile, antioxidant, enzyme inhibitory and acute toxicity activity of Astragalus bruguieri. Baghdad Sci J. 2023; 20(1): 157-165. https://doi.org/10.21123/bsj.2022.6769
Anastasiou I A, Eleftheriadou I, Tentolouris A, Koliaki C, Kosta O A, Tentolouris N. The effect of oxidative stress and antioxidant therapies on pancreatic β-cell dysfunction: results from in vitro and in vivo studies. Curr Med Chem. 2021; 28(7): 1328-1346. https://doi.org/10.2174/0929867327666200526135642
Dinić S, Arambašić Jovanović J, Uskoković A, Mihailović M, Grdović N, Tolić A, et al. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management. Front Endocrinol (Lausanne). 2022; 13: 1-20. https://doi.org/10.3389/fendo.2022.1006376
Al-Chalabi N S, Al-Sawaf R N. Effect of polyherbs-mixture composed of nigella sativa, trigonella foenum - graceum, cyperus rotundus and teucrium polium on the levels of malondialdehyde and glutathione for diabetic patients type II. Baghdad Sci J. 2013; 10(3): 854–865. https://doi.org/10.21123/bsj.2013.10.3.854-865
Promyos N, Phienluphon P P, Wechjakwen N, Lainampetch J, Prangthip P, Kwanbunjan K. Inverse correlation of superoxide dismutase and catalase with type 2 diabetes among rural thais. Nutrients. 2023; 15(9): 1-14. https://doi.org/10.3390/nu15092071
Khin P P, Lee J H, Jun H S. Pancreatic beta-cell dysfunction in type 2 diabetes. Eur J Inflamm. 2023; 21: 1-13. https://doi.org/10.1177/1721727X231154152
Heshmat R, Darvishi A, Abdi Dezfouli R, Nikkhah A, Radmanesh R, Moslemi E. A short-term economic evaluation of early insulin therapy compared to oral anti-diabetic drugs in order to reduce the major adverse events in type 2 diabetes patients in Iran. Curr Med Res Opin. 2024: 1-8. https://doi.org/10.1080/03007995.2024.2333425
Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol. 2017; 8: 1-12. https://doi.org/10.3389/fendo.2017.00006
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals. 2021; 14(8): 1-32. https://doi.org/10.3390/ph14080806
Mochamad L, Malarvili S, Jasmine K, Lim V. In vitro analysis of quercetin-like compounds from mistletoe Dendrophthoe pentandra (L.) Miq as a potential antiviral agent for Newcastle disease. F1000Res. 2024; 12: 1-38. https://doi.org/10.12688/f1000research.133489.5
Awang M A, Nik Mat Daud N N N, Mohd Ismail N I, Abdullah F I, Benjamin M A Z. A review of Dendrophthoe pentandra (Mistletoe): phytomorphology, extraction techniques, phytochemicals, and biological activities. Processes. 2023; 11(8): 1-19. https://doi.org/10.3390/pr11082348
Kong D, Wang L, Niu Y, Cheng L, Sang B, Wang D, et al. Dendrophthoe falcata (L.f.) Ettingsh. and Dendrophthoe pentandra (L.) Miq.: A review of traditional medical uses, phytochemistry, pharmacology, toxicity, and applications. Front Pharmacol. 2023; 14: 1-18. https://doi.org/10.3389/fphar.2023.1096379
Hardiyanti R, Marpaung L, Adnyana I K, Simanjuntak P. Biochemical evaluation of Duku’s mistletoe leave (Dendrophthoepentandra (L.) Miq) extract with antidiabetic potential. Rasayan J Chem. 2019; 12(03): 1569-1574. https://doi.org/10.31788/RJC.2019.1235272
Hardiyanti R, Marpaung L, Adnyana I K, Simanjuntak P. Isolation of quercitrin from Dendrophthoe pentandra (L.) Miq leaves and it’s antioxidant and antibacterial activities. Rasayan J Chem. 2019; 12(04): 1822-1827. https://doi.org/10.31788/RJC.2019.1235353
Fahim M D, Rahman I, Naseem N, Imam N, Younus H, Ahsan H, et al. Antidiabetic potential of natural phytochemical antioxidants. JCNB. 2022; 3(2): 26-43. https://doi.org/10.48185/jcnb.v3i2.610
Mohamed G A, Omar A M, El-Araby M E, Mass S, Ibrahim S R M. Assessments of alpha-amylase inhibitory potential of tagetes flavonoids through in vitro, molecular docking, and molecular dynamics simulation studies. Int J Mol Sci. 2023; 24(12): 1-22. https://doi.org/10.3390/ijms241210195
AL-Ishaq, Abotaleb, Kubatka, Kajo, Büsselberg. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019; 9(9): 1-35. https://doi.org/10.3390/biom9090430
Dalimunthe A, Muhammad M, Waruwu S B, Rafi M, Kaban V E, Satria D. Phytochemicals and proximate analysis of Litsea Cubeba Lour. barks. IOP Conf Ser Earth Environ Sci. 2023; 1188(1): 1-7. https://doi.org/10.1088/1755-1315/1188/1/012012
Dalimunthe A, Pertiwi D, Muhmmad M, Kaban V E, Nasri N, Satria D. The effect of extraction methods towards antioxidant activity of ethanol extract of Picria fel-terrae Lour. Herbs. IOP Conf Ser Earth Environ Sci. 2022; 1115(1): 1-6. https://doi.org/10.1088/1755-1315/1115/1/012040
Pottathil S, Nain P, Morsy M A, Kaur J, Al-Dhubiab B E, Jaiswal S, et al. Mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves in nicotinamide/streptozotocin-induced type 2 diabetes in rats. Plants. 2020; 9(11): 1-15. https://doi.org/10.3390/plants9111609
Widyawati T, Yusoff N A, Bello I, Asmawi M Z, Ahmad M. Bioactivity-guided fractionation and identification of antidiabetic compound of Syzygium polyanthum (Wight.)’s leaf extract in streptozotocin-induced diabetic rat model. Molecules. 2022; 27(20): 6814-6829. https://doi.org/10.3390/molecules27206814
Dalimunthe A, Satria D, Sitorus P, Harahap U, Angela I F D, Waruwu S B. Cardioprotective effect of hydroalcohol extract of andaliman (Zanthoxylum acanthopodium DC.) fruits on doxorubicin-induced rats. Pharmaceuticals. 2024; 17(3): 359-463. https://doi.org/10.3390/ph17030359
Satria D, Octora D D, Muhammad M, Rosidah, Silalahi J, Waruwu S B. In vivo analysis of Saurauia vulcani Korth. leaves extract as antihypercholesterolemic. Res J Pharm Technol. 2024; 17(5): 2051-2055. https://doi.org/10.52711/0974-360X.2024.00325
Abbas A K, Abbas N K, Ali R M, Abbas L K. Histological and biochemical parameters follow-up in experimental rats administrated dexamethasone and treated with green synthesis titanium dioxide nanoparticles using (Camillia sciences) extracts. Baghdad Sci J. 2020; 17(2): 663-669. https://doi.org/10.21123/bsj.2020.17.2(SI).0663
Surbakti C, Sitorus P, Rosidah R, Satria D. Effect of Saurauia vulcani Korth. leaves on superoxide dismutase, HbA1c levels and insulin expression in hyperglycemic rats. Open Access Maced J Med Sci. 2019; 7(22): 3741-3744. https://doi.org/10.3889/oamjms.2019.494
Anggraini D R, Widyawati T, Syarifah S, Wahyuni A S. Evaluation of blood glucose level and microscopic pancreatic islets of langerhans treated with Lawsonia Inermis Linnaeus leaves ethyl acetate extract in streptozotocin-induced diabetic rat. Scitepress; 2018: 108-112.https://doi.org/10.5220/0010039101080112
Satria D, Sitorus P, Dalimunthe A, Waruwu S B, Asfianti V. Oral acute toxicity study of ethanol extract of Mobe leaves (Artocarpus lacucha Buch-Ham) in Wistar rats. Pharmacia. 2024; 71: 1-8. https://doi.org/10.3897/pharmacia.71.e117500
Rusdiana R, Widyawati T, Sari D K, Widjaja S S. Phytochemical analysis of the ethanol extract of Binahong (Anredera cordifolia (Ten.) Steenis) leaves by UV-Vis spectroscopy. Baghdad Sci J. 2024; 21(11): 3446-3451.https://doi.org/10.21123/bsj.2024.9354
Robiatun R R, Pangondian A, Paramitha R, Zulmai Rani, Gultom E D. Formulation and evaluation of hand sanitizer gel from clove flower extract (Eugenia aromatica L.). IJSTM. 2022; 3(2): 484-491. https://doi.org/10.46729/ijstm.v3i2.472
Lesa K N, Ahmad N, Mayangsari Y, Cahyanto M N, Saputra W D. Anti-diabetic effect of Okara Noodles on streptozotocin-nicotinamide induced diabetic rats. Trends Sci. 2024; 21(5): 7428-7430. https://doi.org/10.48048/tis.2024.7428
Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung. 2014; 101(4): 408-420. https://doi.org/10.1556/APhysiol.101.2014.4.2
Margaritis I, Angelopoulou K, Lavrentiadou S, Mavrovouniotis I C, Tsantarliotou M, Taitzoglou I, et al. Effect of crocin on antioxidant gene expression, fibrinolytic parameters, redox status and blood biochemistry in nicotinamide-streptozotocin-induced diabetic rats. J Biol Res (Thessalon). 2020; 27(1):4-19. https://doi.org/10.1186/s40709-020-00114-5
Song B R, Alam M B, Lee S H. Terpenoid-rich extract of Dillenia indica L. bark displays antidiabetic action in insulin-resistant C2C12 cells and STZ-induced diabetic mice by attenuation of oxidative stress. Antioxidants. 2022; 11(7): 1227-1236.https://doi.org/10.3390/antiox11071227
Putra E D L, Cintya H, Satria D. Antibacterial and antioxidant activities of ethanol extract of sukun (Artocarpus altilis.) leaves against Pseudomonas aeruginosa. E3S Web Conf. 2021; 332: 1-6. https://doi.org/10.1051/e3sconf/202133208006
Satria D, Dalimunthe A, Pertiwi D, Muhammad M, Kaban VE, Nasri N, et al. Phytochemicals, proximate composition, minerals and volatile oil analysis of Zanthoxylum acanthopodium DC. fruits. F1000Res. 2023; 12: 227-230. https://doi.org/10.12688/f1000research.128941.1
Black H S. A synopsis of the associations of oxidative stress, ROS, and antioxidants with diabetes mellitus. Antioxidants. 2022; 11(10): 2003-2019. https://doi.org/10.3390/antiox11102003
Li Y, Ren K. The mechanism of contrast-induced acute kidney injury and its association with diabetes mellitus. Contrast Media Mol Imaging. 2020; 2020: 1-10. https://doi.org/10.1155/2020/3295176
Yaribeygi H, Sathyapalan T, Atkin S L, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020; 2020: 1-13. https://doi.org/10.1155/2020/8609213
Jaishree V, Narsimha S. Swertiamarin and quercetin combination ameliorates hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced type 2 diabetes mellitus in wistar rats. Biomed Pharmacother. 2020; 130: 1-8. https://doi.org/10.1016/j.biopha.2020.110561
Nandi A, Yan L J, Jana C K, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev. 2019; 2019: 1-19. https://doi.org/10.1155/2019/9613090
Ukratalo A M, Kaihena M, Sirait D P O, Pattimura N, Manery D E. Potential bark Cinnamomum burmanii in regenerating damaged liver cells of mice (Mus musculus) diabetes mellitus model. PCJN. 2023; 2(01): 30-40. https://doi.org/10.58549/pcjn.v2i01.58
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation. 2023; 20(1): 57-87.https://doi.org/10.1186/s12974-023-02740-x
Adams M T, Blum B. Determinants and dynamics of pancreatic islet architecture. Islets. 2022; 14(1): 82-100. https://doi.org/10.1080/19382014.2022.2030649
Slak Rupnik M, Hara M. Local dialogues between the endocrine and exocrine cells in the pancreas. Diabetes. 2024; 73(4): 533-541. https://doi.org/10.2337/db23-0760
Downloads
Issue
Section
License
Copyright (c) 2024 Anggun Syafitri, Yuandani, Tri Widiyawati, Dwi Rita Anggraini, Syukur Berkat Waruwu
This work is licensed under a Creative Commons Attribution 4.0 International License.