Some Results on Fixed Points for Monotone Inward Mappings in Geodesic Spaces

Main Article Content

khalid Abed Jassim

Abstract

In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping,  a monotone inward contraction mapping is a  monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.

Article Details

How to Cite
1.
Some Results on Fixed Points for Monotone Inward Mappings in Geodesic Spaces. Baghdad Sci.J [Internet]. 2022 Feb. 1 [cited 2025 Jan. 24];19(1):0091. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5113
Section
article

How to Cite

1.
Some Results on Fixed Points for Monotone Inward Mappings in Geodesic Spaces. Baghdad Sci.J [Internet]. 2022 Feb. 1 [cited 2025 Jan. 24];19(1):0091. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5113

References

Caristi J, kirk W. Fixed poit theorem for mapping satisfying inward condition. The, Trans. O F Soc. Am. Math. 1976; 215:241–252.

Lim T-C. Note a fixed point theorem for weakly inward multivalued contractions. J. Math. Anal. Appl. 2000; 247:323–327.

Alisawi K, Salwa S A. Some results on weakly inward mapping in geodesic metric spaces. Al-Qadisiyah J. Pure Sci. 2020; 25(3):109–118.

Al-Thagafi M, Naseer S. Fixed point theorems for generalized metrically inward maps. Nonlinear Anal. Theory, Methods Appl. 2010; 73(1):31–36.

Ran ACM, Reurings MCB. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004; 132(5):1435–1443.

Bachar M, Khamsi MA. Recent contributions to fixed point theory of monotone mappings. J. Fixed Point Theory Appl. 2017; 19(3):1953–1976.

Kirk W A A. Fixed point theorems for set-valued mappings of contractive type. Pacific J. Math. 1972; 43:553–562.

Xu HK. Multivalued nonexpansive mappings in Banach spaces. Nonlinear Anal. Theory, Methods Appl. 2001; 43(6):693–706.

Alfuraidan MR, Jorquera ED, Khamsi MA. Fixed point theorems for monotone Caristi inward mappings. Numer Funct Anal Optim. 2018 Jul 27;39(10):1092-101.

Piatek B. The behavior of fixed point free nonexpansive mappings in geodesic spaces. J. Math. Anal. Appl. 2017; 445(1):1071–1083.

Ran A. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004; 132(5):1435–1443.

Saejung S. Remarks on endpoints of multivalued mappings on geodesic spaces. Fixed Point Theory Appl. 2016; 52:1–12.

Kifayat U, Junaid A, Nabil M. On Noor iterative process for multivalued nonexpansive mappings with application. Int. J. Math. Anal. 2019; 13(6):293–304.

Ansari AH, Došenovic T, Radenovic S, Saleem N, Šešum-Cavic V, Vujakovic J. C-class functions on some fixed point results in ordered partial metric spaces via admissible mappings. Novi Sad J. Math. 2019; 49(1):101–116.

Papadopoulos A. Metric spaces, convexity and nonpositive curvature. European Mathematical Society 2005.