On α ̌–φ ̆-Fuzzy Contractive Mapping in Fuzzy Normed Space

Main Article Content

Raghad I. Sabri
https://orcid.org/0000-0002-3673-5864
Buthainah A. A. Ahmed

Abstract

The idea of fixed points represents one of the most potent mathematical tools. This paper's main purpose is to introduce a new kind of fuzzy contractive mapping in a fuzzy normed space (briefly  space) namely "fuzzy contractive mapping". We proved some fixed point results for this mapping in the setting of  space using the triangular property of fuzzy norm. Moreover, under specific conditions, some other results for such type of mapping are established. Finally, an example is offered to show the results' usefulness.

Article Details

How to Cite
1.
On α ̌–φ ̆-Fuzzy Contractive Mapping in Fuzzy Normed Space. Baghdad Sci.J [Internet]. 2023 Sep. 20 [cited 2025 Jan. 22];21(4):1355. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8286
Section
article

How to Cite

1.
On α ̌–φ ̆-Fuzzy Contractive Mapping in Fuzzy Normed Space. Baghdad Sci.J [Internet]. 2023 Sep. 20 [cited 2025 Jan. 22];21(4):1355. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8286

References

Sabri RI, Buthainah A. Another Type of Fuzzy Inner Product Spac. Iraqi J Sci . 2023; 64(4), 1853-186. https://doi.org/10.24996/ijs.2023.64.4.25 .

Ajeel Y J, Kadhim SN. Some Common Fixed Points Theorems of Four Weakly Compatible Mappings in Metric Spaces. Baghdad Sci J. 2021;18(3): 0543. https://doi.org/10.21123/bsj.2021.18.3.0543.

Sabri RI, Ahmed BA. Best Proximity Point Results in Fuzzy Normed Spaces. Sci Technol Indones.2023; 8(2):298–304. https://doi.org/10.26554/sti.2023.8.2.298-304.

Abed S, Hasan M Z. Weak convergence of two iteration schemes in banach spaces Eng Technol J. 2019; 37(2B): 32–40. https://doi.org/10.30684/etj.37.2B.1 .

Gregoria V, Minana J, Miraveta D. Contractive sequences in fuzzy metric spaces. Fuzzy Sets Syst. 2020; 379(15): 125-133. https://doi.org/10.1016/j.fss.2019.01.003.

Zainab A, Kider JR. The Hausdorff Algebra Fuzzy Distance and its Basic Properties. Eng Technol J. 2021; 39(7): 1185-1194. https://doi.org/10.30684/etj.v39i7.2001 .

Sabri RI. Compactness Property of Fuzzy Soft Metric Space and Fuzzy Soft Continuous Function. Iraqi J Sci. 2021; 62(9): 3031–3038. https://doi.org/10.24996/ijs.2021.62.9.18.

Paknazar M. Non-Archimedean fuzzy metric spaces and best proximity point theorems. Sahand Commun Math Anal. 2018; 9(1): 85-112. https://doi.org/10.22130/scma.2018.24627.

Sabri RI, Buthainah A. Best proximity point results for generalization of α ̌–n ̌ proximal contractive mapping in fuzzy banach spaces. Indones. J Electr Eng Comput Sci. 2022; 28(3): 1451-1462. https://doi.org/10.11591/ijeecs.v28.i3.

Kider JR, Noor AK. Properties of Fuzzy Closed Linear Operator. Eng Technol J. 2019; 37(18): 25-31. https://doi.org/10.30684/etj.37.1B.5 .

Gheeab MN, Kider JR. Properties of the Adjoint Operator of a General Fuzzy Bounded Operator. Baghdad Sci J. 2021; 18(1): 0790. https://doi.org/10.21123/bsj.2021.

Sabri RI. Fuzzy Convergence Sequence and Fuzzy Compact Operators on Standard Fuzzy Normed Spaces. Baghdad Sci J. 2021; 18(4): 1204-1211. https://doi.org/10.21123/bsj.2021.18.4.1204.

Hussain S, Samreen M. A Fixed point Theorem Satisfying Integral Type Contraction in Fuzzy Metric Space. Res Fixed Point Theory Appl. 2018; 2018: 1–8. https://doi.org/10.30697/rfpta-2018-013 .

Awasthi T, Dean SB. An analysis on fixed point theorem and its application in fuzzy metric space. J Adv Sch Res Allied Educ. 2018; 15(5): 65–69. https://doi.org/10.29070/15/57511 .

Tamang P, Bag T. Some fixed point results in fuzzy cone normed linear space. J Egypt Math Soc. 2019; 27(1): 1-14. https://doi.org/10.1186/s42787-019-0045-6 .

Kadhm AE. Schauder Fixed Point Theorems in Intuitionistic Fuzzy Metric Space. Iraqi J Sci. 2022; 58(1C): 490–496. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6137 .

Nguyen HT, Walker EA, Walker C. A First Course in Fuzzy Logic. 4rd edition. New York: Chapman and Hall/CRC; 2018. p. 458. https://doi.org/10.1201/9780429505546 .

Nadaban S, Dzitac I. Atomic decompositions of fuzzy normed linear spaces for wavelet applications. Informatica. 2014; 25(4): 643–662. https://doi.org/10.15388/Informatica.2014.3 .

Samet B, Vetro C, Vetro P. Fixed point theorems for α ψ-contractive type mappings. Nonlinear Anal Theory Methods Appl. 2012; 75(4): 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 .

Salimi P, Latif A, Hussain N. Modified α-ψ-contractive mappings with applications. J Fixed Point Theory Appl. 2013; 2013 (151): 1-19. https://doi.org/10.1186/1687-1812-2013-151 .