Nickel Nanoparticles to Enhance Heavy Crude Oil Recovery in Sudan Oil Plant
DOI:
https://doi.org/10.21123/bsj.2024.9196Keywords:
Morphology, Nickel nanoparticles, Oil viscosity, Sudan oil plant, XRD analysis.Abstract
This study focuses on the fabrication of nickel nanoparticles (Ni NPs) using a chemical reduction method with hydrazine monohydrate as the reducing agent. The Ni NPs were characterized using transmission electron microscopy (TEM) and X-ray diffraction spectrometry (XRD). The characterization results confirmed the production of pure Ni NPs with an average particle size ranging from 50 to 90 nm and various shapes depending on the hydrazine ratio. The synthesized Ni NPs were then utilized to enhance the viscosity reduction of heavy oil. Significant viscosity reduction of 51%, from 7128 mPa.s to 3495 mPa.s, was achieved at a temperature of 80 °C. Additionally, a slight decrease in density from 0.9514 g/cm3 to 0.9416 g/cm3 and a slight increase in the ( American pertroleum institute) API number from 17.04 to 18.59 (9.0%) were observed
Received 06/06/2023
Revised 31/05/2024
Accepted 02/06/2024
Published Online First 20/09/2024
References
Cao Y, Zhang B, Zhu Z, Rostami M, Dong G, Ling , et al. Access-dispersion-recovery strategy for enhanced mitigation of heavy crude oil pollution using magnetic nanoparticles decorated bacteria. Bioresour Technol. 2021 Oct 1; 337: 125404. https://doi.org/10.1016/j.biortech.2021.125404
Mosavat N, Al-Riyami S, Pourafshary P, Al-Wahaibi Y, Rudyk S. Recovery of viscous and heavy oil by CO2-saturated brine. Eng Clim Chang. 2020 Dec 1; 1: 100009. https://doi.org/10.1016/j.egycc.2020.100009
Li P, Zhang F, Zhu T, Zhang C, Liu G, Li X. Synthesis and properties of the active polymer for enhanced heavy oil recovery. Colloids and Surfaces A: Colloids Surf A: Physicochem Eng. 2021 Oct 5; 626: 127036.https://doi.org/10.1016/j.colsurfa.2021.127036
Zhou X, Li X, Shen D, Shi L, Zhang Z, Sun X, et al. CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study. Energy. 2022 Jan 15; 239: 122003. https://doi.org/10.1016/j.energy.2021.122003
Davoodi SM, Miri S, Taheran M, Brar SK, Galvez-Cloutier R, Martel R. Bioremediation of Unconventional Oil Contaminated Ecosystems under Natural and Assisted Conditions: A Review. Environ Sci Technol. 2020 Feb 18; 54(4): 2054-2067. https://doi.org/10.1021/acs.est.9b00906
Wraight S, Hofmann J, Allpress J, Depro B. Environmental Justice Concerns and the Proposed Atlantic Coast Pipeline Route in North Carolina . Research Triangle Park (NC): RTI Press; 2018 https://doi.org/10.3768/rtipress.2018.mr.0037.1803
Chen S, Liang XJ. Nanobiotechnology and nanomedicine: small change brings big difference. Sci China Life Sci.. 2018 Apr; 61: 371-2. https://doi.org/10.1007/s11427-018-9293-2
Janković NZ, Plata DL. Engineered nanomaterials in the context of global element cycles. Environ Sci Nano. 2019; 6(9): 2697-2711. https://doi.org/10.1039/C9EN00322C
Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Aldhaher A, et al. High-Gravity-Assisted Green Synthesis of NiO-NPs Anchored on the Surface of Biodegradable Nanobeads with Potential Biomedical Applications. J Biomed Nanotechnol. 2020 Apr 1; 16(4): 520-530. https://doi.org/10.1166/jbn.2020.2904
Ammar SH, Ismail NN, Jabbar MF. Preparation and characterization of magnetic nickel nanoparticles by chemical reduction reaction. JPRS. 2018; 8(4): 87-100. https://doi.org/10.52716/jprs.v8i4.266
Ádám AA, Szabados M, Varga G, Papp Á, Musza K, Kónya Z, et al. Ultrasound-assisted hydrazine reduction method for the preparation of nickel nanoparticles, physicochemical characterization and catalytic application in Suzuki-Miyaura cross-coupling reaction. Nanomater. 2020 Mar 28; 10(4): 632. https://doi.org/10.3390/nano10040632
Shokrlu YH, Babadagli T. Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications. J Pet Sci Eng. 2014 Jul 1; 119: 210-220. http://dx.doi.org/10.1016/j.petrol.2014.05.012
Zhou W, Xin C, Chen Y, Mouhouadi RD, Chen S. Nanoparticles for Enhancing Heavy Oil Recovery: Recent Progress, Challenges, and Future Perspectives. Energy Fuel 2023 May 37 (12): 8057-8078 https://doi.org/10.1021/acs.energyfuels.3c00684
Rellegadla S, Bairwa HK, Kumari MR, Prajapat G, Nimesh S, Pareek N, et al. An effective approach for enhanced oil recovery using nickel nanoparticles assisted polymer flooding. Energy Fuel. 2018 Oct 16; 32(11): 11212-21. https://doi.org/10.1021/acs.energyfuels.8b02356
Yi S, Babadagli T, Andy Li H. Use of nickel nanoparticles for promoting aquathermolysis reaction during cyclic steam stimulation. SPE J. 2018 Feb 14; 23(01): 145-56. https://doi.org/10.2118/186102-PA
Shakir F, Hussein HQ, Abdulwahhab ZT. Influence of Nanosilica on Solvent Deasphalting for Upgrading Iraqi Heavy Crude Oil . Baghdad Sci.J . 2023 Feb. 1 [cited 2023 Jul. 16]; 20(1): 0144. https://doi.org/10.21123/bsj.2022.6895
Ma L, Zhang S, Zhang X, Dong S, Yu T, Slaný M, et al. Enhanced aquathermolysis of heavy oil catalysed by bentonite supported Fe (III) complex in the present of ethanol. J Chem Technol Biotechnol. 2022 May; 97(5): 1128-37. https://doi.org/10.1002/jctb.6997
Ádám AA, Szabados M, Polyákovics Á, Musza K, Kónya Z. The Synthesis and Use of Nano Nickel Catalysts. J Nanosci Nanotechnol. 2019 Jan 1; 19(1): 453-458.https://doi.org/10.1166/jnn.2019.15781
Usami T, Salman SA, Kuroda K, Gouda MK, Mahdy A, Okido M. Synthesis of Cobalt-Nickel Nanoparticles via a Liquid-Phase Reduction Process. J Nanotechnol. 2021 Dec 16; 2021: 1-7. https://doi.org/10.1155/2021/9401024
Goswami C, Saikia H, Tada K, Tanaka S, Sudarsanam P, Bhargava SK, et al. Bimetallic palladium–nickel nanoparticles anchored on carbon as high-performance electrocatalysts for oxygen reduction and formic acid oxidation reactions. ACS Appl Energy Mater. 2020 Sep 2; 3(9): 9285-95. https://doi.org/10.1021/acsaem.0c01622
Jabir SA, Harbbi KH. A comparative study of Williamson-Hall method and size-strain method through x-ray diffraction pattern of cadmium oxide nanoparticle. In AIP Conf Proc. 2020 Dec 15; 2307(1): 020015). AIP Publishing LLC.https://doi.org/10.1063/5.0033762
Zheng L, Zhang X, Bustillo KC, Yao Y, Zhao L, Zhu M, et al. Growth mechanism of core–shell PtNi–Ni nanoparticles using in situ transmission electron microscopy. Nanoscale. 2018; 10(24): 11281-6. https://doi.org/10.1039/C8NR01625A
Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem Rev. 2020 Jul 15; 121(2): 649-735. https://doi.org/10.1021/acs.chemrev.0c00454
Bai L, Ouyang Y, Song J, Xu Z, Liu W, Hu J, et al. Synthesis of metallic nanocrystals: from noble metals to base metals. Mater 2019 May 8; 12(9): 1497. https://doi.org/10.3390/ma12091497
Jadhav RM, Kumar G, Balasubramanian N, Sangwai JS. Synergistic effect of nickel nanoparticles with tetralin on the rheology and upgradation of extra heavy oil. Fuel. 2022 Jan 15; 308: 122035. https://doi.org/10.1016/j.fuel.2021.122035
26.Taborda EA, Alvarado V, Franco CA, Cortés FB. Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles. Fuel. 2017 Feb 1; 189: 322-33. https://doi.org/10.1016/j.fuel.2016.10.110
Geraldino BR, Nunes RF, Gomes JB, da Poça KS, Giardini I, Silva PV, et al. Evaluation of exposure to toluene and xylene in gasoline station workers. Adv Prev Med. 2021 May 20; 2021. https://doi.org/10.1155/2021/5553633
Farhan RZ, Ebrahim SE. Preparing nanosilica particles from rice husk using precipitation method. Baghdad Sci J. 2021; 18: 494-500. https://doi.org/10.21123/bsj.2021.18.3.0494
Downloads
Issue
Section
License
Copyright (c) 2024 M. S. Suliman, sahl yasin, Basant Lal
This work is licensed under a Creative Commons Attribution 4.0 International License.