The construction of Complete (kn,n)-arcs in The Projective Plane PG(2,5) by Geometric Method, with the Related Blocking Sets and Projective Codes
محتوى المقالة الرئيسي
الملخص
A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n + 1 of them, are collinear.
A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc.
In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.
A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc.
In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.
تفاصيل المقالة
كيفية الاقتباس
1.
The construction of Complete (kn,n)-arcs in The Projective Plane PG(2,5) by Geometric Method, with the Related Blocking Sets and Projective Codes. Baghdad Sci.J [انترنت]. 1 يونيو، 2014 [وثق 24 ديسمبر، 2024];11(2):242-8. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2627
القسم
article
كيفية الاقتباس
1.
The construction of Complete (kn,n)-arcs in The Projective Plane PG(2,5) by Geometric Method, with the Related Blocking Sets and Projective Codes. Baghdad Sci.J [انترنت]. 1 يونيو، 2014 [وثق 24 ديسمبر، 2024];11(2):242-8. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2627