التقديرالمتزامن للرصاص والكادميوم في النماذج البيئية باستخدام الزنك - ثنائي إيثيل ثيوكاربامات
DOI:
https://doi.org/10.21123/bsj.2024.9475الكلمات المفتاحية:
التربة الملوثة، الكادميوم، داي اثيل داي ثايوكاربامات، الرصاص، التقدير الكمي.الملخص
تمتلك المعادن الثقيلة السامة تأثيرا خطيرا على البيئة ، وان عملية التقدير الكمي لتركيزهذه المعادن يعطي معلومات مهمة تخص سمية المعادن. في هذه الدراسة تم استخدام طريقة تحليلية طيفية سهلة ، سريعة وانتقائية مع طريقة الاستخلاص بالطورالصلب للتقديرالمتزامن للرصاص والكادميوم في النماذج البيئية باستخدام الزنك - ثنائي إيثيل ثيوكاربامات المترسب ككاشف. تم استخدام طريقة الاستخلاص بالطور الصلب لعملية لتركيز المسبق لمحتوى الرصاص والكادميوم في النماذج البيئية. أظهرت الطريقة المقترحة مدى خطية يتراوح بين 0,1 – 16 مايكروغرام/مل و 0,1 – 14 مايكروغرام/مل لكل من الرصاص والكادميوم على التوالي. وكانت قيمة الاستردادية تتراوح بين 90 – 96 % مع معامل ارتباط (ر2) مقداره 0,9985 و 0,9989 لكل من الرصاص والكادميوم على التوالي. تم دراسة الظروف المثلى مثل (قيمة الاس الهيدروجيني ، وقت الاستخلاص و حجم الطورالمائي) على كفاءة عملية الاستخلاص للمعادن بالاضافة الى دراسة تأثير وجود الاملاح والايونات الاخرى كمتداخلات. تم تطبيق الطريقة المقترحة في الدراسة على عدد من النماذج البيئية (التربة والماء) لتقدير كمية العناصر الموجودة فيها. اظهرت النتائج المستحصلة دقة وانتقائية جيدة تدل على امكانية استخدام الطريقة المقترحة في تقدير الرصاص والكادميوم وامكانية تطبيقها في مجالات اخرى.
Received 15/09/2023,
Revised 26/01/2024,
Accepted 28/01/2024,
Published Online First 20/03/2024
المراجع
Nawab J, Ghani J, Khan S, Xiaoping W. Minimizing the risk to human health due to the ingestion of arsenic and toxic metals in vegetables by the application of biochar, farmyard manure and peat moss. J Environ Manage. 2018; 214: 172–83. https://doi.org/10.1016/j.jenvman.2018.02.093.
Qin G, Niu Z, Yu J, Li Z, Ma J, Xiang P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere. 2021; 267: 129205. https://doi.org/10.1016/j.chemosphere.2020.129205.
Ran H, Guo Z, Yi L, Xiao X, Zhang L, Hu Z, et al. Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China. J Hazard Mater. 2021; 413: 125382–2. https://doi.org/10.1016/j.jhazmat.2021.125382.
Taleb R, Qasim B. Potassium Hydroxide Activated Peanut Shell as an Effective Adsorbent for the Removal of Zinc, Lead and Cadmium from Wastewater. J Ecol Eng. 2023; 24(1): 66–78. https://doi.org/10.12911/22998993/156006.
Khoshgoftarmanesh AH, Afyuni M, Norouzi M, Ghiasi S, Schulin R. Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. Geoderma. 2018; 309: 1–6. https://dx.doi.org/10.1016/j.geoderma.2017.08.019.
Khan AM, Nawaz I, Yousaf S, Ammar Sabir Cheema, Iqbal M. Soil amendments enhanced the growth of Nicotiana alata L. and Petunia hydrida L. by stabilizing heavy metals from wastewater. J Environ Manage. 2019; 242: 46–55. https://doi.org/10.1016/j.jenvman.2019.04.040.
Taleb R, Qasim B. Adsorptive Removal of Potentially Toxic Elements from Wastewater Using Peanut Shells Biochar. IOP Conf Ser.: Earth Environ Sci. 2023; 1158(3): 032012. https://doi.org/10.1088/1755-1315/1158/3/032012
Liu M, Yang Y, Yun X, Zhang M, Wang J. Concentrations, distribution, sources, and ecological risk assessment of heavy metals in agricultural topsoil of the Three Gorges Dam region, China Environ Monit Assess. 2015; 187(3): 147. https://doi.org/10.1007/s10661-015-4360-6
Gascó G, Álvarez ML, Paz-Ferreiro J, Méndez A. Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere. 2019; 231: 562–70. https://doi.org/10.1016/j.chemosphere.2019.05.168
Tregubova P, Koptsik G, Stepanov A, Koptsik S, Spiers G. Organic amendments potentially stabilize metals in smelter contaminated Arctic soils: An incubation study. Heliyon. 2021; 7(1): e06022. https://doi.org/10.1016/j.heliyon.2021.e06022
Qasim B, Razzak AA, Rasheed RT. Effect of biochar amendment on mobility and plant uptake of Zn, Pb and Cd in contaminated soil. IOP Conf Ser.: Earth Environ Sci. 2021; 779(1): 012082. https://doi.org/10.1088/1755-1315/779/1/012082
Ding K, Wu Q, Wei H, Yang W, Séré G, Wang S, et al. Ecosystem services provided by heavy metal-contaminated soils in China. J Soils Sediments. 2016; 18(2): 380–90. https://doi.org/10.1007/s11368-016-1547-6
Alzahrani L, El-Ghamry HA, Saber AL, Mohammed GI. Spectrophotometric determination of Mercury(II) ions in laboratory and Zamzam water using bis Schiff base ligand based on 1,2,4-Triazole-3,5-diamine and o-Vaniline. Arab J chem. 2022; 16(5): 104418–8. https://doi.org/10.1016/j.arabjc.2022.104418
Zeng W, Hu Z, Luo J, Hou X , Jiang X. Highly sensitive determination of trace antimony in water samples by cobalt ion enhanced photochemical vapor generation coupled with atomic fluorescence spectrometry or ICP-MS. Anal Chim Acta. 2022; 1191: 339361https://doi.org/10.1016/j.aca.2021.339361.
Cui T, Zhu X, Wu L, Tan X. Ultrasonic assisted dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry for determination of trace gallium in vanadium titanium magnetite. Microchem J. 2020; 157: 104993–3.https://doi.org/10.1016/j.microc.2020.104993.
Hamad AA, Alamer KH, Alrabie HS. The accumulation risk of heavy metals in vegetables which grown in contaminated soil. Baghdad Sci J. 2021; 18(3): 471-479.https://dx.doi.org/10.21123/bsj.2021.18.3.0471.
Hasan NM. A comparative study of heavy metals and trace elements concentration in milk samples consumed in Iraq. Baghdad Sci J. 2020; 17(1(Suppl.): 0310.https://doi.org/10.21123/bsj.2020.17.1(Suppl.).0310.
Naiema Vakili Saatloo, Boshra Ebrahiminejad, Parisa Sadighara, Manafi L, Najmeh Yazdanfar, Saeid Fallahizadeh. Quantification and human health risk assessment of cadmium and lead in wheat flour on the Iranian market by atomic absorption spectrometry. Case stud Chem Environ Eng. 2023; 8: 100438–8. https://doi.org/10.1016/j.cscee.2023.100438
Şaylan M, Zaman BT, Gülhan Bakırdere E, Bakırdere S. Determination of trace nickel in chamomile tea and coffee samples by slotted quartz tube-flame atomic absorption spectrometry after preconcentration with dispersive liquid-liquid microextraction method using a Schiff base ligand. J Food Compos Anal. 2020; 88: 103454. https://doi.org/10.1016/j.jfca.2020.103454.
Altunay N, Elik A, Gürkan R. Monitoring of some trace metals in honeys by flame atomic absorption spectrometry after ultrasound assisted-dispersive liquid liquid microextraction using natural deep eutectic solvent. Microchem J. 2019; 147: 49–59. https://doi.org/10.1016/j.microc.2019.03.003.
Anjos SL, Almeida JS, Sena L, Cristina A, Santos AP, Antonio F S Queiroz, et al. Determination of Cu, Ni, Mn and Zn in diesel oil samples using energy dispersive X-ray fluorescence spectrometry after solid phase extraction using sisal fiber. Talanta. 2021; 225: 121910–0.https://doi.org/10.1016/j.talanta.2020.121910.
de la Calle I, Fernández-Rodríguez D, Lavilla I, Bendicho C. Silver nanoparticle-cellulose composite for thin-film microextraction of Cd and Pb as dithiocarbamate derivatives followed by inductively-coupled plasma mass spectrometry determination. Advances in Sample Preparation. 2022; 4: 100041. https://doi.org/10.1016/j.sampre.2022.100041.
Hasan Cesur, Aksu Ç. Determination of Cadmium and Zinc in Fertilizer Samples by FAAS after Solid-Phase Extraction with Freshly Precipitated Manganese-diethyldithiocarbamate. Anal Sci. 2006; 22(5): 727–30. https://doi.org/10.2116/analsci.22.727
Cesur H. Selective solid-phase extraction of Cu(II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination. Chem Pap. 2007; 61(5): 342–347. https://doi.org/10.2478/s11696-007-0045-0.
Uddin MN, Abdus Salam Md, Hossain MA. Spectrophotometric measurement of Cu(DDTC)2 for the simultaneous determination of zinc and copper. Chemosphere. 2013; 90(2): 366–73. https://dx.doi.org/10.1016/j.chemosphere.2012.07.029
Pournara AD, Rapti S, Lazarides T, Manos MJ. A dithiocarbamate-functionalized Zr4+ MOF with exceptional capability for sorption of Pb2+ in aqueous media. J Environ Chem Eng. 2021; 9(4): 105474. https://doi.org/10.1016/j.jece.2021.105474
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Bashar Qasim
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.