On Strongly F – Regular Modules and Strongly Pure Intersection Property
محتوى المقالة الرئيسي
الملخص
A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
تفاصيل المقالة
كيفية الاقتباس
1.
On Strongly F – Regular Modules and Strongly Pure Intersection Property. Baghdad Sci.J [انترنت]. 2 مارس، 2014 [وثق 19 ديسمبر، 2024];11(1):178-85. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1548
القسم
article
كيفية الاقتباس
1.
On Strongly F – Regular Modules and Strongly Pure Intersection Property. Baghdad Sci.J [انترنت]. 2 مارس، 2014 [وثق 19 ديسمبر، 2024];11(1):178-85. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1548