تحديد طفيلي Leishmania tropica باستخدام تقنية Nested-PCR وبعض عوامل الضراوة في محافظة ذي قار، العراق
محتوى المقالة الرئيسي
الملخص
تعد اللشمانيا الجلدية هي واحدة من الامراض المتوطنة في العراق، وهي تسبب من مشاكل صحية واسعة النطاق فضلا عن كونها أحد الامراض الغير مسيطر عليها. الدراسة الحالية هدفت الى تشخيص أنواع اللشمانيا المسببة للآفات الجلدية بين المرضى في محافظة ذي قار- جنوب العراق، كذلك لتحديد بعض عوامل الضراوة لطفيلي L. tropica. تضمنت هذه الدراسة ثلاث مستشفيات وهي الحسين التعليمي، سوق الشيوخ العام والشطرة العام في المحافظة للفترة من بداية شهر كانون الأول 2018 ولنهاية شهر أيلول 2019. تم جمع العينات من 80 مريض يعانون من الإصابة بداء اللشمانيا الجلدية ومن كلا الجنسين وبأعمار متنوعة، مواقع سكن مختلفة في المحافظة وآفات جلدية مفردة ومتعددة. استخدمت تقنية Nested-PCR لتضخيم جين kDNA لتشخيص أنواع اللشمانيا فضلا عن استخدام تقنية Conventional-PCR في التحري عن تواجد بعض جينات الضراوة. بينت نتائج الدراسة تواجد نوعين من الطفيلي في منطقة الدراسة. وبينت نتائج الترحيل الكهربائي لجين kDNA وجود 65 عينة موجبة لداء اللشمانيا الجلدية وبحجم 750bp للـ L. tropica و560bp للـ L. major. سجل طفيلي L. tropica نسبة بلغت 57.5% وكان النوع الأكثر شيوعا بينما سجل طفيلي L. major نسبة بلغت 23.75% حيث ظهرت بمستوى اقل. لم يلاحظ وجود فروق معنوية عند المقارنة بين إصابات الذكور والاناث، في حين بينت نتائج التحليل الاحصائي وجود فروق معنوية عند المقارنة بين المجاميع العمرية. كشفت الدراسة الحالية وجود جينات الضراوة LPG1, GP63, CPA and PPG1 في كل العزلات لطفيلي L. tropica وبنسبة تواجد بلغت 100%. كذلك كشفت الدراسة عن ان طفيليL. tropica هو النوع الرئيسي المسبب لداء اللشمانيا الجلدي في محافظة ذي قار، وجينات الضراوة هي ضرورية ومهمة لإمراضية الطفيلي.
Received 8/12/2019
Accepted 24/8/2020
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Ghatee MA, Mirhendi H, Marashifard M, Kanannejad Z, Taylor WR, Sharifi I. Population Structure of Leishmania tropica Causing Anthroponotic Cutaneous Leishmaniasis in Southern Iran by PCR-RFLP of Kinetoplastid DNA. Biomed Res Int [Internet]. 2018;2018:1–11. Available from: https://doi.org/10.1155/2018/6049198
Aronson N, Herwaldt BL, Libman M, Pearson R, Lopez-velez R, Weina P, et al. Diagnosis and Treatment of Leishmaniasis : Clinical Practice Guidelines by the Infectious Diseases Society of America ( IDSA ) and the American Society of Tropical Medicine and Hygiene ( ASTMH ). Clin Infect Dis. 2016;63:202–64.
Sharma U, Singh S. Immunobiology of Leishmaniasis. Indian J Exp Biol. 2009;47(2009):412–23.
Alemayehu B, Alemayehu M. Leishmaniasis: A Review on Parasite, Vector and Reservoir Host. Heal Sci J. 2017;11(4):1–6.
Khosravi A, Sharifi I, Fekri A, Kermanizadeh A, Bamorovat M, Mostafavi M, et al. Clinical Features of Anthroponotic Cutaneous Leishmaniasis in a Major Focus, Southeastern Iran, 1994-2014. Iran J Parasitol. 2017;12(4):544–53.
Martínez-lópez M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol. 2018;9:1–16.
Gupta G, Oghumu S, Satoskar AR. Mechanisms of Immune Evasion in Leishmaniasis Gaurva. Adv. Appl. Microbiol. 2013; 82:155-184. doi: 10.1016/B978-0-12-407679-2.00005-3.
Corrales RM, Sereno D, Mathieu-Daudé F. Deciphering the Leishmania exoproteome: What we know and what we can learn. FEMS Immunol Med Microbiol [Internet]. 2010;58(1):27–38. Available from: 10.1111/j.1574-695X.2009.00608.x
Atayde VD, Hassani K, Lira S, Borges R, Adhikari A, Martel C, et al. Leishmania Exosomes and other Virulence Factors : Impact on Innate Immune Response and Macrophage Functions. Cell Immunol [Internet]. 2016;1–35. Available from: http://dx.doi.org/10.1016/j.cellimm.2016.07.013
Forestier C, Gao Q, Boons G. Leishmania lipophosphoglycan : how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate ? Cellu and Infec Microbiol. 2015;4:1–7.
Singh KS. Human Emerging and Re-emerging Infections. 2nd ed. Singapore: Wiley; 2015. 1040 p.
Lázaro-Souza M, Matte C, Lima JB, Duque GA, Quintela-Carvalho G, Vivarini ÁC, et al. Leishmania infantum Lipophosphoglycan-Deficient Mutants: A Tool to Study Host Cell-Parasite Interplay. Front Microbiol [Internet]. 2018;9(626):1–10. Available from: doi: 10.3389/fmicb.2018.00626
Medina LS, Souza BA, Queiroz A, Guimarães LH, Machado PRL, Carvalho EM, et al. The gp63 Gene Cluster Is Highly Polymorphic in Natural Leishmania ( Viannia ) braziliensis Populations , but Functional Sites Are Conserved. PLoS One. 2016;1–13.
Yao C. Major Surface Protease of Trypanosomatids : One Size Fits All ? Infect Immun. 2010;78(1):22–31.
Hassani K, Shio MT, Martel C, Faubert D, Olivier M. Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes. PLoS One [Internet]. 2014;9(4):1–14. Available from: 10.1371/journal.pone.0095007
Oghumu S, Natarajan G, Satoskar AR. Pathogenesis of Leishmaniasis in Humans. Hum Emerg Re-emerging Infect. 2015;I:337–48.
Contreras I, Gomez M, Nguyen O, Shio M, McMaster R, Olivier M. Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63. PLoS Pathog. 2010;6(10).
Rana S, Mahato JP, Kumar M, Sarsaiya S. Modeling and docking of Cysteine Protease-A (CPA) of Leishmania donovani. J Appl Pharm Sci. 2017;7(9):179–84.
Das P, Alam MN, Paik D, Karmakar K, De T, Chakraborti T. Protease Inhibitors in Potential Drug Development for Leishmaniasis. Indian J Biochem Biophys. 2013;50:363–76.
Siqueira-neto JL, Debnath A, Mccall L, Bernatchez JA, Ndao M, Reed SL, et al. Cysteine proteases in protozoan parasites. NEGLECTROPIC DISE [Internet]. 2018;12(8):1–20. Available from: https://doi.org/ 10.1371/journal.pntd.0006512
Mukhopadhyay S, Mandal C. Glycobiology of Leishmania donovani. Indian J Med Res. 2006;123:203–20.
Fernandez-prada C, Sharma M, Plourde M, Bresson E, Roy G, Leprohon P, et al. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms Christopher. Drugs Drug Resist [Internet]. 2018;8(2):165–73. Available from: https://doi.org/10.1016/j.ijpddr.2018.03.004
Aoki JI, Laranjeira-silva MF, Muxel SM, Floeter-winter LM. ScienceDirect The impact of arginase activity on virulence factors of Leishmania amazonensis. Curr Opin Microbiol [Internet]. 2019;52:110–5. Available from: https://doi.org/10.1016/j.mib.2019.06.003
Montgomery J, Curtis J, Handman E. Genetic and structural heterogeneity of proteophosphoglycans in Leishmania. Mol Biochem Parasitol. 2002;121:75–85.
Lima JB, Araújo-Santos T, Lázaro-Souza M, Carneiro AB, Ibraim IC, Jesus-Santos FH, et al. Leishmania infantum lipophosphoglycan induced- Prostaglandin E2 production in association with PPAR-γ expression via activation of Toll like receptors-1 and 2. Nature. 2017;7:1–11.
Mohammad FI, Hmood KA. Detection of Leishmania species by Nested-PCR and virulence factoes GIPLS, GP63 in L. Major by conventional-PCR. Biochem Cell Arch. 2018;18(2):2255–9.
Al-Difaie RS. Prevalence of Cutaneous Leishmaniasis in AL-Qadissia province and the evaluation of treatment response by pentostam with RT-PCR. Wasit University /College of Science; 2013.
Al-Hassani MKKT. Epidemiological, Molecular and Morphological Identification of cutaneous leishmaniasis and, It’s insect vectors in Eastern Al-Hamzah district,AlQadisiya province. Coll. Educat. AL-Qadisiya Univ.; 2016.
Izadi S, Mirhendi H, Jalalizand N, Khodadadi H, Mohebali M, Nekoeian S, et al. Molecular Epidemiological Survey of Cutaneous Leishmaniasis in Two Highly Endemic Metropolises of Iran , Application of FTA Cards for DNA Extraction From Giemsa-Stained Slides. Jundishapur J Microbiol. 2016;9(2):1–7.
Postigo JAR. Leishmaniasis in the world health organization eastern mediterranean region. Int J Antimicrob Agents [Internet]. 2010;36(1):62–5. Available from: doi: 10.1016/j.ijantimicag.2010.06.023
Abdolmajid F, Ghodratollah SS, Hushang R, Mojtaba MB, Ali MM, Abdolghayoum M. Identification of Leishmania species by kinetoplast DNA-polymerase chain reaction for the first time in Khaf district, Khorasan-e-Razavi province, Iran. Trop Parasitol. 2015;5(1):50–5.
Ramezany M, Sharifi I, Babaei Z, Ghasemi P, Almani N, Heshmatkhah A, et al. Geographical distribution and molecular characterization for cutaneous leishmaniasis species by sequencing and phylogenetic analyses of kDNA and ITS1 loci markers in south-eastern Iran. Pathog Glob Health [Internet]. 2018;112(3):132–41. Available from: https://doi.org/10.1080/20477724.2018.1447836
Azmi K, Nasereddin A, Ereqat S, Schnur L, Schonian G, Abdeen Z. Methods incorporating a polymerase chain reaction and restriction fragment length polymorphism and their use as a ‘ gold standard ’ in diagnosing Old World cutaneous leishmaniasis. Diagn Microbiol Infect Dis [Internet]. 2011;71(2):151–5. Available from: http://dx.doi.org/10.1016/j.diagmicrobio.2011.06.004
Cunze S, Kochmann J, Koch LK, Hasselmann KJQ, Klimpel S. Leishmaniasis in Eurasia and Africa : geographical distribution of vector species and pathogens. R Soc Open Sci [Internet]. 2019;6:1–12. Available from: http://dx.doi.org/10.1098/rsos.190334
Galgamuwa LS, Dharmaratne SD, Iddawela D. Leishmaniasis in Sri Lanka : spatial distribution and seasonal variations from 2009 to 2016. Parasit Vectors [Internet]. 2018;11(60):1–10. Available from: DOI 10.1186/s13071-018-2647-5
Al-bajalan MMM, Al-jaf SMA, Niranji SS, Abdulkareem DR, Al-kayali KK, Kato H. An outbreak of Leishmania major from an endemic to a non-endemic region posed a public health threat in Iraq from 2014-2017 : Epidemiological , molecular and phylogenetic studies. PLoS Negl Trop Dis. 2018;12(3):1–11.
Khosravi A, Sharifi I, Dortaj E, Afshar AA, Mostafavi M. The Present Status of Cutaneous Leishmaniasis in a Recently Emerged Focus in South-West of Kerman Province , Iran. Iran J Publ Heal. 2013;42(2):182–7.
El Hamouchi A, Daoui O, Kbaich MA, Mhaidi I, El Kacem S, Guizani I, et al. Epidemiological features of a recent zoonotic cutaneous leishmaniasis outbreak in Zagora province, southern Morocco. PLoS Negl Trop Dis. 2019;13(4):1–14.
Alsamarai AM, Alobaidi HS. Cutaneous leishmaniasis in Iraq. J Infect Dev Ctries. 2009;3(2):123–9.
Rahi AA. Cutaneous Leishmaniasis in Iraq: A clinicoepidemio-logical descriptive study. Sch J App Med Sci [Internet]. 2013;1(6):1021–5. Available from: http://saspublisher.com/wp-content/uploads/2013/12/SJAMS161021-1025.pdf
Hassan HF, Abbas SK, Shakoor DS. Epidemiological and hematological Investigation of Leishmania major. Kirkuk Unive J Sci. 2017;12(1):457–79.
Scala A, Micale N, Piperno A, Rescifina A, Schirmeister T, Kesselringc J, et al. Targeting of the Leishmania mexicana cysteine protease CPB2.8DCTE by decorated fused benzo[b] thiophene scaffol. R Soc Chem. 2016;6:30628–35.
Williams RA, Tetley L, Mottram JC, Coombs GH. Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol [Internet]. 2006;61(3):655–74. Available from: doi:10.1111/j.1365-2958.2006.05274.x
Denise H, Poot J, Jiménez M, Ambit A, Herrmann DC, Vermeulen AN, et al. Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5. BioMed Cent. 2006;13:1–13.
Samant M, Sahasrabuddhe AA, Singh N, Gupta SK, Sundar S, Dube A. Proteophosphoglycan is differentially expressed in sodium stibogluconate-sensitive and resistant Indian clinical isolates of Leishmania donovani. Parasitol. 2007;134(9):1175–84.
Ilg T, Montgomery J, Stierhof Y, Handman E. Molecular Cloning and Characterization of a Novel Repeat-containing Leishmania major Gene , ppg1 , That Encodes a Membrane-associated Form of Proteophosphoglycan with a Putative Glycosylphosphatidylinositol Anchor. Biol Chem. 1999;274(44):31410–20.