أطياف الطاقة و السعة الحرارية لنقطة كمية من زرنخيد الجاليوم موضوعة في مجال مغناطيسي خارجي

محتوى المقالة الرئيسي

Mohammad Elsaid
http://orcid.org/0000-0002-1392-3192
Mahmoud Ali
Ayham Shaer

الملخص

          تم دراسة أطياف الطاقة والسعة الحرارية لإلكترون مفرد محصور في نقطة كمية وموضوع في مجال مغناطيسي خارجي منتظم باستخدام نموذج جاوس كجهد حصر. تم استخدام طريقة المحاور الدقيقة لحل دالة هاميلتون لنقطة الكم الكاوسية مع الأخذ بعين الاعتبار الحركة المغزلية للإلكترون. جميع عناصر مصفوفة الطاقة تم حسابها بصورة مجموع منتهي. تم عرض اعتماد أطياف الطاقة للإلكترون كدالة للمجال المغناطيسي ، وشدة جهد الحصر الكاوسي وحجم النقطة الكمية. بالإضافة إلى ذلك، تم دراسة سلوك السعة الحرارية للنقطة الكمية كدالة لدرجة الحرارة و المجال المغناطيسي الخارجي المؤثر عليها.

تفاصيل المقالة

كيفية الاقتباس
1.
أطياف الطاقة و السعة الحرارية لنقطة كمية من زرنخيد الجاليوم موضوعة في مجال مغناطيسي خارجي. Baghdad Sci.J [انترنت]. 1 يونيو، 2021 [وثق 12 مايو، 2024];18(2):0409. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4860
القسم
article

كيفية الاقتباس

1.
أطياف الطاقة و السعة الحرارية لنقطة كمية من زرنخيد الجاليوم موضوعة في مجال مغناطيسي خارجي. Baghdad Sci.J [انترنت]. 1 يونيو، 2021 [وثق 12 مايو، 2024];18(2):0409. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4860

المراجع

Jung D, Herrick R, Norman J, Turnlund K, Jan C, Feng K, et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl Phys Lett. 2018; 112(15): 153507

Klco N, Dumitrescu F, McCaskey A J, Morris T D, Pooser R C, Sanz M, et al. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys Rev A . 2018; 98(3): 032331.

van Veen J, Proutski A, Karzig T, Pikulin D I, Lutchyn R M, Nygård J, et al. Magnetic-field-dependent quasiparticle dynamics of nanowire single-Cooper-pair transistors. Phys Rev B. 2018; 98(17): 174502.

Kramer I J, Minor J C, Moreno Bautista G, Rollny L, Kanjanaboos P, Kopilovic D, et al. Efficient spray coated colloidal quantum dot solar cells. Adv Mater. 2005; 27(1):116-121.

Cross A W, Bishop L S, Sheldon S, Nation P D, Gambetta J M. Validating quantum computers using randomized model circuits. Phys Rev A. 2019; 100(3): 032328.

Vaseghi B, Rezaei G, Sajadi T. Optical properties of parabolic quantum dots with dressed impurity: combined effects of pressure, temperature and laser intensity. Physica B Condens Matter.2015 ; 456:171-175.

Bzour F, Shaer A, Elsaid M K. The effects of pressure and temperature on the exchange energy of a parabolic quantum dot under a magnetic field. J Taibah Univ Sci. 2017; 11(6): 1122-1134.

Ciftja O, Kumar A A. Ground state of two-dimensional quantum-dot helium in zero magnetic field: Perturbation, diagonalization, and variational theory. Phys Rev B. 2004; 70(20): 205326.

Ciftja O, Faruk M G. Two-dimensional quantum-dot helium in a magnetic field: Variational theory. Phys Rev B. 2005; 72(20): 205334.

Shaer A, Elsaid M K, Elhasan M. Variational calculations of the heat capacity of a semiconductor quantum dot in magnetic fields. Chin J Phys. 2016; 54(3): 391-397.

Kandemir B S. Variational study of two-electron quantum dots. Phys Rev B, 2005; 72(16): 165350.

Kandemir B S. Two interacting electrons in a uniform magnetic field and a parabolic potential: The general closed-form solution. J Math Phys. 2005; 46(3): 032110.

El-Said M. Spectroscopic structure of two interacting electrons in a quantum dot by the shifted 1/N expansion method. Phys Rev B. 2000; 61(19): 13026.

El-Said M. The energy level ordering in two-electron quantum dot spectra. Superlattice Microst. 1998; 23(6): 1237-1243.

Dybalski W, Hawrylak P. Two electrons in a strongly coupled double quantum dot: From an artificial helium atom to a hydrogen molecule. Phys Rev B. 2005; 72(20): 205432.

Khordad R, Tafaroji S, Katebi R, Ghanbari A. Optical and electronic properties of anisotropic parabolic quantum disks in the presence of tilted magnetic fields. Physica B Condens Matter. 2012 ; 407(3): 533-538.

Maksym P A, Chakraborty T. Quantum dots in a magnetic field: Role of electron-electron interactions. Phys. Rev. Lett. 1990; 65(1): 108.

Helle M, Harju A, Nieminen R M. Two-electron lateral quantum-dot molecules in a magnetic field. Phys Rev B. 2005; 72(20): 205329.

Phuc H V, Van Tung L. Linear and nonlinear phonon-assisted cyclotron resonances in parabolic quantum well under the applied electric field. Superlattice Microst. 2014; 71: 124-133.

Xin W, Zhao Y W. Effects of hydrogen-like impurity and electromagnetic field on quantum transition of an electron in a Gaussian potential with QD thickness. Superlattice Microst. 2018; 117: 220-227.

Semina M A, Golovatenko A A, Rodina A V. Ground state of the holes localized in II-VI quantum dots with Gaussian potential profiles. Phys Rev B. 2016; 93(4): 045409.

Boda A, Chatterjee A. Transition energies and magnetic properties of a neutral donor complex in a Gaussian GaAs quantum dot. Superlattice Microst. 2016; 97: 268-276.

Yuan J H, Chen N, Mo H, Zhang Y, Zhang Z H. The second harmonic generation in symmetrical and asymmetrical Gaussian potential quantum wells with applied electric field. Superlattices Microstruct. 2015; 88: 389-395.

Al-Hayek I, Sandouqa A S. Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlattice Microst. 2015; 85: 216-225.

Hong Z, Li-Xue Z, Xue W, Chun-Yuan Z, Jian-Jun L. Impurity-related electronic properties in quantum dots under electric and magnetic fields. Chin Phys B. 2011; 20(3): 037301.

Xie W. Optical properties of an off-center hydrogenic impurity in a spherical quantum dot with Gaussian potential. Superlattice Microst. 2010; 48(2): 239-247.

Elsaid M, Ali M, Shaer A. The magnetization and magnetic susceptibility of GaAs Gaussian quantum dot with donor impurity in a magnetic field. Mod Phys Lett B. 2019; 33(34): 1950422.

Ali M.The magnetization of single GaAs quantum dot with Gaussian confinement. Msc ,Thesis. Nablus: Najah National University; 2007,Available from: DSpace Repository.

Shaer A, ELSAID M, Elhasan M. The magnetic properties of a quantum dot in a magnetic field.Turk J Phy. 2016; 40(3): 209-218.

Nammas F S. Thermodynamic properties of two electrons quantum dot with harmonic interaction. Physica A. 2018; 508: 187-198.

Baghdasaryan D A, Hayrapetyan D B, Kazaryan E M, Sarkisyan H A. Thermal and magnetic properties of electron gas in toroidal quantum dot. Physica E Low Dimens Syst Nanostruct. 2018; 101: 1-4.

Hjaz E, Elsaid M K, Elhasan M. Magnetization of coupled double quantum dot in magnetic fields. J Comput Theor Nanos. 2017; 14(4): 1700-1705.

Elsaid M, Hjaz E, Shaer A. Energy states and exchange energy of coupled double quantum dot in a magnetic field. Int J Nano Dimens. 2017; 8(1): 1-8.

Elsaid M K, Hijaz E. Magnetic Susceptibility of Coupled Double GaAs Quantum Dot in Magnetic Fields. Acta Phys Pol A. 2017; 131(6).

Boyacioglu B, Chatterjee A. Magnetic properties of semiconductor quantum dots with gaussian confinement. Int J Mod Phys B. 2012; 26(4): 1250018.

Nguyen N T, Sarma S D. Impurity effects on semiconductor quantum bits in coupled quantum dots. Phys Rev B. 2011; 83(23): 235322.

Boyacioglu B, Chatterjee A. Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement. J appl. Phys. 2012; 112(8): 083514.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.