تأثير أطوال موجات ضوئية مختلفة على النمو ونشاط الإنزيمات والبناء الضوئي للطحالب البحرية الدقيقة ديوناليلا بارفا Dunaliella parva

محتوى المقالة الرئيسي

Mostafa Mohamed EL-Sheekh
Samha Dewidar
Azza hamad

الملخص

يعتبر الضوء عاملاً هامًا يؤثر على نمو الطحالب الدقيقة وكفاءة التمثيل الضوئي لها ؛ ومع ذلك ، لا يُعرف الكثير عن كيفية تأثير شدة الضوء مع الطول الموجي على قدرة التمثيل الضوئي ونمو الطحالب البحرية الدقيقة. في هذه الدراسة ، تمت دراسة نمو الطحالب البحرية الخضراء الدقيقة ديوناليلا بارفا  واقلمته تحت شدة الضوء المختلفة (25 ~ 70 μmol m-2 s-1) ونوعية الضوء (الأزرق والأخضر والأحمر) مقارنة بالضوء الأبيض عند 40 μmol m-2 s-1  كتجربة ضابطة (كنترول). تمت مراقبة النمو عن طريق حساب عدد الخلايا ومحتوى الصبغة وتراكيز Chl a و Chl b والكاروتينات. تم تسجيل النمو الأمثل وأعلى كفاءة التمثيل الضوئي (Fv / Fm) بكثافة ضوء 40 μmol m-2 s-1 ، ضوء أبيض ، و 1.25 مولار كلوريد الصوديوم (. 1.47 and 0.678×106 cell mL-1، على التوالي). أظهر نشاط إنزيمات مضادات الأكسدة ، بما في ذلك الكاتلاز والبيروكسيديز وكذلك محتوى الأسكوربات ، أعلى قيم بلغت 0.190 µM/min.mg Chl, 0.434 and 13.3 mg/g f.wt.  على التوالي ، تحت تأثير  الضوء الأخضر ، الذي أكد وجود ضغوط بيئية.

تفاصيل المقالة

كيفية الاقتباس
1.
تأثير أطوال موجات ضوئية مختلفة على النمو ونشاط الإنزيمات والبناء الضوئي للطحالب البحرية الدقيقة ديوناليلا بارفا Dunaliella parva . Baghdad Sci.J [انترنت]. 1 يونيو، 2021 [وثق 18 مايو، 2024];18(2):0268. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5328
القسم
article

كيفية الاقتباس

1.
تأثير أطوال موجات ضوئية مختلفة على النمو ونشاط الإنزيمات والبناء الضوئي للطحالب البحرية الدقيقة ديوناليلا بارفا Dunaliella parva . Baghdad Sci.J [انترنت]. 1 يونيو، 2021 [وثق 18 مايو، 2024];18(2):0268. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5328

المراجع

Rad F, Aksoz N, Hejazi M. Effect of saltiness on the growth and production of β- carotene in isolated Dunaliella sp. microalga from qom salt Lake of Iran. Int. J. Biosci. 2015; 6(2): 164-171.

Mingazzini M, Teresa M, Palumbo H. Open Mass Cultures of Marine Microalgae for Biodiesel Production: Laboratory Approach to Study Species Competition in Mixed Cultures. Nat. Resour. 2015; 6: 174-180.

Xu Y, Ibrahim IM, Wosu CI, Ben-Amotz A, Harvey PJ. Potential of New Isolates of Dunaliella Salina for Natural β-Carotene Production. Biology. 2018; 7(1): 14.

Xi Y, Wang J, Chu Y, Chi Z, Xue Z. Effects of different light regimes on Dunaliella salina growth and β-carotene accumulation. Algal Research. 2020; 52; 102111.

Coesel S, Baumgartner A, Teles L, Ramos A, Henriques N, Cancela L, et al. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steadystate transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Marine Biotechnol. 2008; 10(5): 602- 611.

Masuda T, Tanaka A, Melis A. Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol. Biol. 2003; 51: 757-771.

Bohne F, Linden H. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta-Gene Structure and Expression. 2002; 1579: 26-34.

Park S, Lee Y, Jin E. Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis. Algae 2013; 28(2): 203-211.

Korbee N, Mata M, Figueroa F. Photoprotection mechanisms against ultraviolet radiation in Heterocapsa sp. (Dinophyceae) are influenced by nitrogen availability Mycosporine-like amino acids vs. xanthophyll cycle. Am. Soc. Limnol. Oceanogrphy Inc. 2010; 55(2): 899-908.

Palacios YM, Vonshak, A, Beardall, J. Photosynthetic and growth responses of Nannochloropsis oculata (Eustigmatophyceae) during batch cultures in relation to light intensity. Phycologia. 2018; 57 (5): 492-502.

Loeblich L. Photosynthesis and pigments influenced by light intensity and salinity in the halophilic Dunaliella salina (Chlorophyta). J. Mar. Biol. Assoc.UK, 1982; 62: 493-508.

Vijaya V, Anand N. Blue light enhance the pigment synthesis in Cyanobacterium Anabaena ambiguo Rao (Nostacales). ARPN. J. Agric. Biol. Sci. 2009; 4(3): 36-43.

Robert R. Growth measurements. Division rate. In R.J. Sttein (ED). Physiological methods. Culture methods and growth measurements. Cambridge Univ. Press, Cambridge. 1979; 29: 311.

Fogg G.E. Algal Cultures and Phytoplankton Ecology. The University of Winsconsin Press: London. 1975; pp.7-45

Mckinney G. Absorption of light by chlorophyll solutions. J. Boil. Chem. 1941; 140: 315-322.

Kato M, Shimizu S. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing Tobacco leaves, phenolic-dependent peroxidative degradation. Canad. J. Bot. 1987; 65: 729-735.

Oberbacher M, Vines H. Spectrophotometric assay of ascorbic acid oxidase. Nature. 1963; 197: 1203-1204.

Oser, B. Hawks physiological chemistry, McGraw-Hills, New York, 1979.

Garcia F, Freile-Pelegrin Y, Robledo D. Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresource Tech. 2007; 98: 1359-1365.

Zarandi M L, Hejazi M, Bagherieh-Najjar M, Chaparzadeh N. Light intensity effects on some molecular and biochemical characteristics of Dunaliella salina. Iran. J. Plant Physiol. 2015; 5(2): 1311- 1321.

Taha O, Abo El-Kheir W, Hammouda F, Abd El-Hady H. Production of ß-carotene and glycerol from Dunaliella bardawil and D. salina isolated from the Egyptian wetlands Qarun and Bardawil. International Conference on Ecological, Environmental and Biological Sciences (ICEEBS-2012), Dubai; 2012.

Taha H. Massive production of some economically important metabolic compounds in Dunaliella salina. M.Sc. Thesis. Fac. of Sci. Alex. Univ., Egypt, 1997.

Gordillo F, Goutx M, Figueroa F, Niell F. Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J. Appl. Phycol. 1998; 10:135-144.

Ilkhnur A, Cirik S, Goksan T. Effect of light intensity, salinity and temperature on growth in Camalt strain of Dunaliella viridis Teodoresco from Turkey. J. Biol. Sci. 2008; 8:1356-1359.

Perez-Boerema A, Klaiman D, Caspy I, Netzer-El SY, Amunts A, Nelson N. Structure of a minimal photosystem I from the green alga Dunaliella salina. Nature Plants. 2020; 6: 321-32.

Aro E, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. BBA- Bio. Energetics. 1993; 1143:113-134.

Levy H, Tal T, Shais A, Zamir A. The photosynthetic response of Dunaliella bardawil to the changes in the sunlight spectrum under field conditions. J. Biol. Chem. 1993; 268: 20892-20896.

Pourkarimi S, Hallajisani A, Alizadehdakhel A, Nouralishahi A, Golzary A. Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatal Agric Biotechnol. 2020; 29: 101771

Anderson J. Photoregulation of the composition, function, and structure of thylakoid membranes. Ann. Rev. Plant Physiol. 1986; 37: 93-136.

Negi S, Perrine S, Friedland N, Kumar A, Tokutsu R, Minagawa J, et al. Light regulation of light‐harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. The Plant Journal 2020; 103: 584-603.

Larsson U, Anderson J, Andersson B. Variations in the relative content of the peripheral and inner light-harvesting chlorophyll a/b-protein complex (LHCII) subpopulations during thylakoid light adaptation and development. BBA-Bioenergetics. 1987; 894: 69-75.

Wu H, Wang CJ, Bian XW, Zeng SY, Lin KC, Wu B, et al. Nematicidal efficacy isothiocyanates against root-knot nematode Meloidogyne Javanica in Cucumber. Crop. Port. 2011; 30: 33-37.

Ramel F, Mialoundama A, Havaux M. Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. J. Exp. Bot. 2013; 64:799-805.

Pfannschmidt T. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci. 2003; 8: 33-41.

Stetsenko LA, Pashkovsky PP, Voloshin RA, Kreslavski VD, Kuznetsov LV, Allakhverdiev SI. Role of anthocyanin and carotenoids in the adaptation of the photosynthetic apparatus of purple- and green-leaved cultivars of sweet basil (Ocimum basilicum) to high-intensity light. Photosynthetica. 2020; 58 (4): 890-901.

Hamada E, Dowidar S, Punnet K. Influence of spectral range and carbon and nitrogen sources on oxygen evolution and Emerson enhancement in Chlamydomonas renhardtii. Biol. Plant. 2003; 46(3): 398-397.

Muthuvelan B, Noro T, Nakamura K. Effect of light quality on the cell integrity in marine alga Ulva pertusa (Chlorophyceae). Indian J. Marine Sci. 2002; 31(1): 21-25.

Wang S, Verma SK, Said IH, Thomsen L, Ullrich MS, Kuhnert N. Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microbial cell factories. 2018 Dec;17(1):1-3.

Kowallik W. Blue light effects on respiration. Annus. Rev. Plant Physiol. 1982; 33: 51-72.

Dowidar S. Effect of growth conditions on carbon assimilation and oxygen evolution under the influence of different light qualities in Chlamydomonas reinhardtii. Thesis submitted to the faculty of science Tanta University, 1990.

Kowallik W, Schürmann R. Chlorophyll a/chlorophyll b ratios of Chlorella vulgaris in blue or red light. –In: Senger, H. (ed.) Blue light Effects in Biological Systems. p. 352-358. Springer- Verlag, Berlin – Heidelberg – New York, 1984.

Terborgh J. Effects of red and blue light on the growth and morphogenesis of Acetabularia crenulate. Nature. 1965; 25: 1360-1363.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.