طريقة طيفية جديدة لتقدير الميثيل دوبا في المستحضرات الصيدلانية

محتوى المقالة الرئيسي

Sahar Rihan Fadhel
https://orcid.org/0000-0003-2594-3948
Rusul Mazin Kaddouri

الملخص

الهدف من البحث هو تطوير طريقة طيفية جديدة لتقدير عقار الميثيل دوبا  بشكليه النقي والصيدلاني تعتمد الطريقة المقترحة على التفاعل  بين المثيل دوبا و كاشف الانسدين بوجود نيتروبروسيد البوتاسيوم وهيدروكسيد الصوديوم لتكوين ناتج ملون تم دراسة تأثير العديد من العوامل المؤثرة على ناتج التفاعل تتضمن تركيز الكاشف و زمن التفاعل و استقرارية  الناتج الملون مع ضبط هذه العوامل. متابعة التفاعل تمت بقياس الامتصاص عند 597 نانومتر للناتج الملون. في مدى من التركيز من (0.50 إلى 80.0) ميكروغرام.مل -1 كانت حساسية ساندل 0.0218 مايكروغرام.سم-1 و حد الكشف 0.0353 مايكروغرام.مل-1  و الحد الكمي 0.2691 مايكروغرام.مل-1. تم تطبيق الطريقة المقترحة بنجاح لتقدير المثيل دوبا في المستحضرات الصيدلانية.

تفاصيل المقالة

كيفية الاقتباس
1.
طريقة طيفية جديدة لتقدير الميثيل دوبا في المستحضرات الصيدلانية. Baghdad Sci.J [انترنت]. 1 أبريل، 2024 [وثق 22 مايو، 2024];21(4):1275. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8558
القسم
article

كيفية الاقتباس

1.
طريقة طيفية جديدة لتقدير الميثيل دوبا في المستحضرات الصيدلانية. Baghdad Sci.J [انترنت]. 1 أبريل، 2024 [وثق 22 مايو، 2024];21(4):1275. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8558

المراجع

Anastacio M, Hoyumpa Jr MD, Alastair M, Connell MD. Methyldopa hepatitis. Am J Dig Dis. 1973 Mar; 18(3): 213–222. https://doi.org/10.1007/BF01071975

Brunton L, Knollmann B, Hilal-Dandan R. Goodman & Gilman’s: The pharmacological basis of therapeutics. McGraw-Hill Education 14th ed. 2023 Jan; 1377p. https://www.amazon.com/Goodman-Gilmans-Pharmacological-Basis-Therapeutics-dp-1264258070/dp/1264258070/ref=dp_ob_title_bk

Graig C R, Stitzel R E. Modern pharmacology with clinical application. Sixth ed. Lippincott Williams and Wilkins USA. 2003; 235–236p. https://alraziuni.edu.ye/uploads/pdf/Lippincott-Modern-Pharmacology-With-Clinical-Applications-6E.pdf.

Mosby. Mosby's medical dictionary. eBook on VitalSource Elsevier 2021; 11th ed.

Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry. 2018Jan; 145: 187–196. 10.1016/j.phytochem.2017.09.016.

AbdulSattar J A. Exploiting the diazotization reaction of 4- minoacetophenone for methyldopa determination. Baghdad Sci J. 2014 Mar; 11(1): 139-46. https://doi.org/10.21123/bsj.2014.11.1.139-146.

Gonçalves M S, Armstrong D W, Cabral L M, Pinto E C, Sousa V P. Development and validation of a fast HPLC method for methyldopa enantiomers using superficially porous particle based macrocyclic glycopeptide stationary phase. Microchem J. 2021; 164: 105957. https://doi.org/10.1016/j.microc.2021.105957

Grecco C F, Miranda L F C, Queiroz M E C. Aminopropyl hybrid silica monolithic capillary containing mesoporous SBA-15 particles for in-tube SPME-HILIC-MS/MS to determine levodopa, carbidopa, benserazide, dopamine, and 3-O-methyldopa in plasma samples, Microchem J. 2020; 157: 105106. https://doi.org/10.1016/j.microc.2020.105106

Baladi M, Amiri M, Javar H A, Mahmoudi-Moghaddam H, Salavati-Niasari M. Green synthesis of perovskite-type TbFeO3/CuO as a highly efficient modifier for electrochemical detection of methyldopa. J Electroanal Chem. 2022 Jun. 915: 116339. https://doi.org/10.1016/j.jelechem.2022.116339.

Halakoei1 H, Ghalkhani M, Sobhani-Nasab A. Rahimi-Nasrabad M. An efficient electrochemical sensor based on CeVO4-CuWO4 nanocomposite for methyldopa. Mater Res Express. 2021; 8 (085001): 1-12. https://doi.org/10.1088/2053-1591/ac16f1.

Wang C, Wang Z, Han D, Hu Y, Zhao J, Yang X, et al. Simultaneous determination of levodopa and methyldopa in human serum by capillary electrophoresis. Se Pu. 2006 Jul; 24(4): 389-91. https://pubmed.ncbi.nlm.nih.gov/17017167/

Talebpour Z. Haghgoo S. Shamsipur M. 1H nuclear magnetic resonance spectroscopy analysis for simultaneous determination of levodopa, carbidopa and methyldopa in human serum and pharmaceutical formulations. Anal Chim Acta. 2004 Mar; 506 (1): 97-104. https://doi.org/10.1016/j.aca.2003.10.081.

Vlase L, Mihu D, Popa D S, Popa A, Briciu C, Loghin F, el al. Determination of methyldopa in human plasma by LC/MS-MS for therapeutic drug monitoring. Studia Universitatis Babeș-Bolyai Chemia. 2013 Jan; 58(1): 31-41. https://www.researc9999999999hgate.net/publication/287542213

Erdoğdu G, Yağci Ş Z, Kuyumcu Savan E. Investigation of the Voltammetric Behavior of Methyldopa at a Poly (p-Aminobenzene Sulfonic Acid) Modified Sensor. Turk J Pharm Sci. 2019 Dec; 16(4): 450-456. https://doi.org/10.4274/tjps.galenos.2018.44711

Tajik S, Aflatoonian M R, Beitollahi H, Shoaie I S, Dourandish Z, Fariba G N, et al. Electrocatalytic oxidation and selective voltammetric detection of methyldopa in the presence of hydrochlorothiazide in real samples, Microchem J. 2020 Nov; 158: 105182. https://doi.org/10.1016/j.microc.2020.105182.

Shihab I A, Al-Sabha T N. Application of cloud point method for spectrophotometric determination of salbutamol sulphate and methyldopa. Pak J Anal Environ Chem. 2020 Jun; 21(1): 10-18. http://dx.doi.org/10.21743/pjaec/2020.06.02

Abood N K, Hassan M J M, AL-Daamy M A. Spectrophotometric determination methyldopa and Salbutamol by oxidative coupling, cloud point and flow injection in pharmaceutical formulations. Int J Drug Deliv. 2019; 9(2): 182-192. https://doi.org/10.25258/ijddt.9.2.11.

Alaallah N J, Dhahir S A, Ali H H. Spectrophotometric evaluation of methyldopa in pure and pharmaceutical formulation using Ecological-friendly Method. IOP Conf Ser.: Mater Sci Eng. 2020; 871: 012033. https://doi.org/10.1088/1757-899X/871/1/012033.

Dhamra M Y, Al-Sabha T N. Spectrophotometric method for indirect determination of antihypertensive drugs in pharmaceuticals. Egypt J Chem. 2020; 63(10): 3767-3777. https://doi.org/10.21608/EJCHEM.2020.18096.2102.

Ayad M M, Hosny M M, Metias Y M. Green spectrophotometric estimation of minor concentrations of methyldopa and terbutaline sulphate in pure forms and tablets using polyvinylpyrrolidone-capped silver nanoparticles. Nano Biomed. Eng. 2021; 13(3): 240-248. https://doi.org/10.5101/nbe.v13i3.p240-248.

Ghaib Allah N M, Ahmed A K, Tapabashi N O. Spectrophotometric determination of methyldopa in pure and pharmaceutical preparations by the oxidative coupling reaction with 1,5-diaminonaphthalene in the presence of ammonium ceric (IV) nitrate . Kirkuk Univ J Sci Stud. 2022; 17 (4): 42-49. https://doi.org/ 10.32894/kujss.2022.133098.1060

Shakkor S J, Mohammed N, Shakor S R. Spectrophotometric method for determination of methyldopa in pure and pharmaceutical formulation based on oxidative coupling reaction. Chem Methodol. 2022; 6(11): 851-860. https://doi.org/10.22034/chemm.2022.342221.1559

Revanasiddappa H D, Deepakumari H N, Mallegowda S M, Vinay K B. Facile spectrophotometric determination of nimodipine and nitrazepam in pharmaceutical preparations. Analele Universitatii Bucuresti. Chimie.2011; 20(2): 189-196. https://gw-chimie.math.unibuc.ro/anunivch/2011-2/AUBCh202189196.pdf

Logan S R. Fundamentals of chemical kinetic. Longman. Angew Chem 1996. https://doi.org/10.1002/ange.19961082034

Dhahir SA, Hamed A .H., Salman MK, Ahmed RK. Safety method, Spectrophotometric Determination of Sulfamethaxazole drug in bulk and Pharmaceutical Preparations. Baghdad Sci J. 2010 Mar. 7; 7(1): 607-13. https://doi.org/10.21123/bsj.2010.7.1.607-613

Skoog D A, Holler F J, Crouch S R. Principles of instrumental analysis. 7th Edition, Sunder College Publisher, New York. 2017: 374-349p.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.